
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2018

Doc 16 Visitor, Prototype, Flyweight
Nov 7, 2018

Copyright ©, All rights reserved. 2019 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

 2

Visitor Pattern

Visitor

 3

Intent
Represent an operation to be performed on the
elements of an object structure

Visitor lets you define a new operation without
changing the classes of the elements on which it
operates

Tree Example

 4

class Node { ... }

class InnerNode extends Node {...}

class LeafNode extends Node {...}

class Tree { ... }

Tree Printing

 5

HTML Print

PDF Print

TeX Print

RTF Print

Others likely in future

Operations are complex

Not part of BST abstraction

Need to traverse tree

Do different things on different types of nodes

Assume

 6

Document

HTMLDocument PDFDocument TeXDocument

First Attempt

 7

print(Tree source, Document output) {

foreach(Node current : source) {

if current.isInnerNode() && output.isHtml() {

print inner node on html document

} else if current.isLeafNode() && output.isHtml() {

print leaf node on html document

} else if current.isInnerNode() && output.isPDF() {

print inner node on pdf document

} else if current.isLeafNode() && output.isPDF() {

print leaf node on pdf document

} etc.

Second Attempt

 8

Create Printer Classes

Use iterator to access all elements

Process each element

Second Attempt

 9

class TreePrinter {
public void printTree (Tree toPrint, Document output) {

foreach(Node current : source) {
if (current.isLeafNode())

printLeafNode(current, output);
else if (current.isInternalNode())

printInternalNode(current, output);
}

}

private void printLeafNode(Node current, Document output) {
if output.isHtml()

print leaf node on html document
else if output.isPDF()

print leaf node on PDF document
else if etc

}

Hidden case statements

What we would like

 10

class TreePrinter {
public void printTree (Tree source, Document output) {

foreach(Node current : source) {
printNode(current, output);

}
}

private void printNode(InnerNode current, HTMLDocument output) {
print inner node on html document

}

private void printNode(LeafNode current, HTMLDocument output) {
print leaf node on html document

}

private void printNode(InnerNode current, PDFDocument output) {
print inner node on PDF document

}
etc

Compile Error

Overloaded Methods

 11

Which overloaded method to run

Selected at compile time

Based on declared type of parameter

Does not use runtime information

Use Subclasses

 12

TreePrinter

HTMLTreePrinter PDFTreePrinter TeXTreePrinter

Third Attempt

 13

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
if (current.isLeafNode())

printLeafNode(current, output);
else if (current.isInternalNode())

printInternalNode(current, output);
}

}

public Document getDocument() { return output;}

private abstract void printLeafNode(Node current);
private abstract void printInnerNode(Node current);

}

Third Attempt

 14

class HTMLTreePrinter extends TreePrinter {

private void printLeafNode(Node current) {
print leaf node on html document

}

private void printInnerNode(Node current) {
print inner node on html document

}
}

Overloaded Method

 15

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
printNode(current);

}
}

public Document getDocument() { return output;}

private abstract void printNode(LeafNode current);
private abstract void printNode(InnerNode current);
}

Compile Error

Key Idea

 16

Receiver of method is determined at runtime

x.toString();

Send a message to Nodes to determine what type of node we have

Add Methods to Nodes

 17

class InnerNode extends Node {
 public void print(TreePrinter printer) {
 printer.printInnerNode(this);
 }
}

class LeafNode extends Node {
 public void print(TreePrinter printer) {
 printer.printLeafNode(this);
 }
}

class Node {
abstract public void print(TreePrinter printer);

}

Now we can Use Polymorphism

 18

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
current.print(this);

}
}

public Document getDocument() { return output;}

public abstract void printLeafNode(Node current);
public abstract void printInnerNode(Node current);

}

What Have we gained

 19

No if statements

Can add more types of Documents by adding subclasses

Work for a Document is in one place

Divided work into small parts

We can use method overloading

 20

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
current.print(this);

}
}

public Document getDocument() { return output;}

public abstract void printNode(InnerNode current);
public abstract void printNode(LeafNode current);

}

class InnerNode extends Node {
 public void print(TreePrinter printer) {
 printer.printNode(this);
 }
}

class LeafNode extends Node {
 public void print(TreePrinter printer) {
 printer.printNode(this);
 }
}

But We don’t gain anything

 21

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
current.print(this);

}
}

public Document getDocument() { return output;}

public abstract void printNode(InnerNode current);
public abstract void printNode(LeafNode current);

}

Still need to know
about each node type

One Last Problem

 22

Modified the nodes for a specific issue

For each issue need to add methods to node!?!

Make the structure generic

In The Nodes

 23

class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeNode(this);
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeLeaf(this);
 }
}

class Node {
abstract public void accept(Visitor aVisitor);

}

Visitor

 24

abstract class Visitor {

 abstract void visitBinaryTreeNode(BinaryTreeNode);

 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);
}

class HTMLPrintVisitor extends Visitor {

 public void visitBinaryTreeNode(BinaryTreeNode x) {
 HTML print code here
 }

 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}
}

 25

Visitor printer = new HTMLPrintVisitor();
Tree toPrint;

Iterator nodes = toPrint.iterator();
foreach(Node current : source) {

current.accept(printer);
}

Node object calls correct
method in Printer

Tree Example

 26

class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeNode(this);
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeLeaf(this);
 }
}

abstract class Visitor {
 abstract void visitBinaryTreeNode(BinaryTreeNode);
 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);
}

class HTMLPrintVisitor extends Visitor {
 public void visitBinaryTreeNode(BinaryTreeNode x) {
 HTML print code here
 }
 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}
}

Put operations into separate object - a visitor

Pass the visitor to each element in the structure

The element then activates the visitor

Visitor performs its operation on the element

Each visitX method only deals with on type of element

Tree Example

 27

Visitor

Double Dispatch

 28

Note that a visit to one node requires two method calls

 Node example = new BinaryTreeLeaf();
 Visitor traveler = new HTMLPrintVisitor();
 example.accept(traveler);

BinaryTreeLeaf HTMLPrintVisitor

example.accept(traveler)

traveler.visitLeafNode(this)

Issue - Who does the traversal?

 29

Visitor

Elements in the Structure

Iterator

When to Use the Visitor

 30

Have many classes of objects with differing interfaces, and you want to perform
operations on these objects that depend on their concrete classes

When many distinct and unrelated operations need to be preformed on objects in
an object structure and you want to avoid cluttering the classes with these
operations

When the classes defining the structure rarely change, but you often want to
define new operations over the structure

Consequences

 31

Visitors makes adding new operations easier

Visitors gathers related operations, separates unrelated
ones

Adding new ConcreteElement classes is hard

Visiting across class hierarchies

Accumulating state

Breaking encapsulation

Avoiding the accept() method

 32

Visitor pattern requires elements to have an accept method

Sometimes this is not possible

 You don’t have the source for the elements

Aspect Oriented Programming

AspectJ eleminates the need for an accept method in aspect oriented Java

AspectS provides a similar process for Smalltalk

Example - Magritte

 33

Web applications have data (domain models)

We need to
 Display the data
 Enter the data
 Validate data
 Store Data

Magritte

 34

For each field in a domain model (class) provide a description

Description contains
 Data type Display string
 Field name Constraints

descriptionFirstName
 ^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)
 beRequired;
 yourself.

descriptionBirthday
 ^ (MADateDescription auto: 'birthday' label: 'Birthday' priority: 70)
 between:(Date year: 1900) and:Datetoday;
 yourself

Magritte

 35

Each domain model has a collection of descriptions

Different visitors are used to

 Generate html to display data

 Generate form to enter the data

 Validate data from form

 Save data in database

Sample Page

 36

 editor := (Person new asComponent)
 addValidatedSwitch;
 yourself.
 result := self call: editor.

http://127.0.0.1:8008/personeditor

Refactoring: Move Accumulation to Visitor

 37

A method accumulates information from heterogenous classes

Move the accumulation task to a Visitor that can visit each class to
accumulate the information

so

Clojure, Lisp & Multi-methods

 38

(defmulti printNode (fn [node document] [(class node) (class document)]))

(defmethod printNode [InnerNode HTMLDocument]
[node document]
code to print InnerNode on HTMLDocument)

(defmethod printNode [InnerNode PDFDocument]
[node document]
code to print InnerNode on PDFDocument)

(defmethod printNode [LeafNode PDFDocument]
[node document]
code to print InnerNode on PDFDocument)

etc.

Clojure, Lisp & Multi-methods

 39

Multi-methods in Clojure do select overloaded method
At run-time
Based on argument types

No need for visitor pattern

 40

Prototype

 41

Specify the kinds of objects to create using a prototypical instance, and create new objects
by copying this prototype

Applicability

Use the Prototype pattern when

A system should be independent of how its products are created, composed, and
represented; and

When the classes to instantiate are specified at run-time; or

To avoid building a class hierarchy of factories that parallels the class hierarchy of
products; or

When instances of a class can have one of only a few different combinations of state.

Prototype

Insurance Example

 42

Insurance agents start with a standard policy and customize it

Two basic strategies:

Copy the original and edit the copy

Store only the differences between original and the customize version in a
decorator

Copying Issues

 43

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects

Shallow Copy Verse Deep Copy

 44

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom
*

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

Original Objects

Deep Copy

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

aChair

aTable

Deeper Copy

Prototype-based Languages

 45

No classes

Behavior reuse (inheritance)
 Cloning existing objects which serve as prototypes

Some Prototype-based languages

 Self
 JavaScript
 Squeak (eToys)
 Perl with Class::Prototyped module

 46

Flyweight

Flyweight

 47

Use sharing to support large number of fine-grained
objects efficiently

Text Example

 48

A document has many instances of the character 'a'

Character has
Font
width
Height
Ascenders
Descenders
Where it is in the document

Most of these are the same for all instances of 'a'

Use one object to represent all instances of 'a'

Java String Example

 49

 public void testInterned() {
 String a1 = "catrat";
 String a2 = "cat";
 assertFalse(a1 == (a2+ "rat"));

 String a3 = (a2 + "rat").intern();
 assertTrue(a1 == a3);
 String a4 = "cat" + "rat";
 assertTrue(a1 == a4);
 assertTrue(a3 == a4);
 }

public String intern()
 Returns a canonical representation for the string object.
 A pool of strings, initially empty, is maintained privately by the class String.

Intrinsic State

 50

Information that is independent from the object's context

The information that can be shared among many objects

So can be stored inside of the flyweight

Extrinsic State

 51

Information that is dependent on the object's context

The information that can not be shared among objects

So has to be stored outside of the flyweight

Structure

 52

Client

FlyweightFactory

getFlyweight(key)

Flyweight
operation(extrinsicState)

ConcreteFlyweight

intrinsicState
operation(extrinsicState)

UnsharedConcreteFlyweight

allState
operation(extrinsicState)

flyweight

if (flywight[key] exists)
! return existing flyweight
else
! create new flyweight
! add it to flyweight pool
! return new flyweight

The Hard Part

 53

Separating state from the flyweight

How easy is it to identify and remove extrinsic state

Will it save space to remove extrinsic state

Example Text

 54

Run Arrays

aaaaabaaaaaaaaaaaaaaaaaaaa

a b a
5 1 20

Text Example

 55

"A Cat in the hat came back the very next day"

Lexi Document Editor

Uses character objects with font information
(To support graphic elements)

Use run array to store font information (extrinsic state)

Normal Bold Normal
22 4 18

