
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2018

Doc 17 Mediator, Flyweight, Facade, Demeter, Active Object
Nov 19, 2019

Copyright ©, All rights reserved. 2019 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

References

 2

Metadata and Active Object Models, Foote & Yoder, http://hillside.net/plop/plop98/
final_submissions/P59.pdf

The User-Defined Product Framework, Johnson & Oakes, https://www.researchgate.net/
publication/2640344_The_User-Defined_Product_Framework

 3

Mediator

 4

Mediator
A mediator controls and coordinates the interactions of a group of objects

A

B

C

DE

A

B

C

DE

Mediator

 5

Structure

Mediator

ConcreteMediator

Colleague

ConcreteColleague1 ConcreteColleague1

Participants

 6

Mediator

Defines an interface for communicating with Colleague objects

ConcreteMediator

Implements cooperative behavior by coordinating Colleague objects

Knows and maintains its colleagues

Colleague classes

Each Colleague class knows its Mediator object

Each colleague communicates with its mediator whenever it would
have otherwise communicated with another colleague

Motivating Example - Dialog Boxes

 7

aClient
director

aListBox
director

aButton
director

anEntryField
director

aFontDialogDirector

 8

How does this differ from a God Class?

 9

When to use the Mediator Pattern

When a set of objects communicate in a well-defined but
complex ways

When reusing an object is difficult because it refers to and
communicates with many other objects

When a behavior that's distributed between several classes
should be customizable without a lot of subclassing

Classic Mediator Example

 10

Simpler Example

 11

Non Mediator Solution

 12

class OKButton extends Button {
TextField password;
TextField username;
Database userData;
Model application;

protected void processEvent(AWTEvent e) {
if (!e.isButtonPressed()) return;
e.consume();
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

http://java.sun.com/javase/6/docs/api/java/awt/AWTEvent.html

Mediator Solution

 13

class LoginDialog extends Panel {
TextField password;
TextField username;
Database userData;
Button ok, cancel;

protected void actionPerformed(ActionEvent e) {
if (!e.isButtonPressed() or e.getSource() != ok) return;
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

Mediator

http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html#actionPerformed(java.awt.event.ActionEvent)
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html

What is Different?

 14

Non Mediator Example

Special Button class
OK button coupled to text fields

Mediator Example

No specialButton class
LoginDialog coupled to text fields

Logic moved from button class to LoginDialog

ReactiveX

 15

In some cases ReactiveX reduces mediator to setting up streams

 16

Facade

 17

 18

Size

Item
Source Lines of Code

(Millions)

F-22 Raptor US jet fighter 1.7

Boeing 787 6.5

Chevy Volt - Embedded Code 10

S-class Mercedes-Benz
radio & navigation system 20

Mac OS 10.4 86

New automobile ~100

Debian 5.0 342

Tesla Linux + ?

Design Patterns text contains under 8,000 lines

The Facade Pattern

 19

Client

Facade

subsystem
classes

Client

???

Create a class that is the interface to the subsystem

Clients interface with the Facade class to deal with the subsystem

Consequences of Facade Pattern

 20

It hides the implementation of the subsystem from clients

It promotes weak coupling between the subsystems and its clients

It does not prevent clients from using subsystem classes directly, should it?

Facade does not add new functionality to the subsystem

Public versus Private Subsystem classes

 21

Some classes of a subsystem are
 public
 facade
 private

Compiler Example

 22

The VisualWorks Smalltalk compiler system has 75 classes

Programmers only use Compiler, which uses the other classes

Compiler evaluate: '100 factorial'

| method compiler |
method := 'reset
 "Resets the counter to zero"
 count := 0.'.

compiler := Compiler new.
compiler
 parse:method
 in: Counter
 notifying: nil

Objective-C Class Clusters & Facade

 23

 24

Law of Demeter

Law of Demeter

 25

A method M of object O can only call methods on the following objects

O
Arguments of M
Objects created within M
O’s direct component objects
A global variable

Law of Demeter

 26

Use only one dot

a.b.method();

a.method();

a.methodB().methodC();

foo = a.methodB();
foo.methodC();

What about Builder Example?

 27

Notification note = new Notification.Builder(mContext)
 .setContentTitle("New mail from " + sender.toString())
 .setContentText(subject)
 .setSmallIcon(R.drawable.new_mail)
 .setLargeIcon(aBitmap)
 .build();

What about Builder Example?

 28

Notification.Builder mailNotifcation= new Notification.Builder(mContext);
mailNotifcation.setContentTitle("New mail from " + sender.toString());
mailNotifcation.setContentText(subject);
mailNotifcation.setSmallIcon(R.drawable.new_mail);
mailNotifcation.setLargeIcon(aBitmap);
Notification note = mailNotifcation.build();

Each method returns the builder

Hinges

 29

Business Rules

 30

Some businesses frequently change rules/deals

Buy two X and get third X for 1/2 price

20 cent coffee day

Don't have time to rewrite code

Need to move business logic into data

 31

Metadata and Active Object Models

Metaprogramming

 32

"Writing of computer programs that write or manipulate
other programs (or themselves) as their data"

Wikipedia

Forces in Software Evolution

 33

Make programs as general as possible

Push config decisions
into the data
To users
Defer until runtime

 34

Property Pattern

Property

 35

Attributes
Annotations
Dynamic Slots
Property List

How do you allow individual objects to augment their state at runtime

Therefore, provide runtime mechanisms for accessing, altering, adding, and removing
properties or attributes at runtime

What is a Property?

 36

Key (Indicator) - name of the property

Value - the value of the property

Descriptor - information about property
display name, type, constraints
default value, accesor functions, etc

Indicates how to downcast
Used by tools

Java Example (Fake)

 37

class Example {
HashMap<String,Object> properties = new Hashmap<String, Object>();

public void setProperty(String name, Object value) {
properties.put(name, value);

}

public Object getProperty(String name) {
return properties.get(name);

}

public boolean hasProperty(String name) {
return properties.containsKey(name);

}

Some Property methods

 38

void addProperty(Indicator name, Descriptor aboutProperty, Object value);
void removeProperty(Indicator name);
boolean hasProperty(Indicator name);
void setProperty(Indicator name, Object value);
Object getProperty(Indicator name);

Decriptor getDescriptor(Indicator name);
Descriptor[] getDescriptors();
Object[] propertyList();

Java Properties Class

 39

Properties defaults = new Properties();
defaults.put("a", "one");
defaults.put("b", 'two");

Properties test = new Properties(defaults);
test.put("c", "three");
test.put("a", "override a default");

test.get("a");
test.get("b");
test.get("d");

Consequences

 40

You avoid a proliferation of subclasses

Fields may be added to individual instances

Fields may be added and removed at runtime

You may iterate across the fields

Metainformation is available to facilitate editing and debugging

Properties can graduate to first-class fields as an application evolves.

Consequences

 41

Syntax is more cumbersome in the absence of reflective support

Property access code is more complex that that for real fields

Reflective mechanisms, where they are available, can be slower

Idiomatic implementations, when reflective support is not available, are also slow

Access to heterogeneous collections can be expensive

A field must be added to all objects, while only a few ever use it

 42

The User-Defined Product Framework

The User-Defined Product Framework

 43

Let users
Construct a complex business object from existing components
Define a new kind of component without programming

Insurance managers can invent a new policy rider

Framework developed at ITT Hartford
Used to represent insurance policies

Problem

 44

Which is the best way to combine features, multiple inheritance or composition?

Use object composition to combine features instead of multiple inheritance.

Need 10,000 classes to get all the combinations needed

Solution - Composition

 45

Policy
Auto
Collision
Auto
Home
Flood

Component

deductible
maximum

Flood
deductible
maximum

Collision Composite

owner
address

Policy
value
type
address

Home
value
make
year

Auto

Problem

 46

Design is still complex and hard to use

a huge number of Component classes

adding a feature means making a new one

Component has too many subclasses.
How can we keep from having to subclass Component?

Solution - Properties (Variable State)

 47

name
value
type

Attribute

Component

Flood Collision Composite

Policy Home Auto

Eliminate the need to subclass to add instance variables by storing attributes in a dictionary instead of
directly in an instance variable.

Problem

 48

name
value
type

Attribute

Component

Flood Collision Composite

Policy Home Auto

Still have subclasses for behavior

Solution - Strategy

 49

Make a Strategy for each method of Component that varies in its subclasses.

name
value
type

Attribute

Composite ValueStrategy

VSum VHome VAutoEditStrategy

ESum EHome EAuto

container

Problem

 50

But now instead of lots of component subclasses

We have lots of Strategy subclasses

Solution - Interpreter

 51

Create small language for the behaviors of strategies

Value strategies use:
arithmetic expressions
table look up
if statements

Solution - Interpreter

 52

name
value
type

Attribute

Composite

TableLookup

container

ValueWith:

Rule

name
AttributeRef

value
Constant

operation
BinaryOp

Rules
read/write attributes
pre-formula

evaluated before component's children
post-formula

evaluated after component's children

Problem

 53

Component subclass replaced with attributes & rules

Each "component" instance has own copy of rules - duplication

Without classes to categorize components
harder to understand code

How can you eliminate duplication in a component system and represent
categories of similar components when all components have the same class?

Solution - Type Object

 54

Use the Type Object pattern; i.e. make objects that represent the common
features of a category of components, and let each component know its type and
access those features by delegating to the type

Component ComponentType

TableLookup

children

ValueWith:

Rule

name
AttributeRef

value
Constant

operation
BinaryOp

name
type

AttributeType
value
Attribute

children

typeinstance

Problem

 55

Sometimes attributes need to have rules

Life insurance over $1,000,000 has special data and rules

Most attributes don't have rules so why add that option to all attributes

Solution - Decorator

 56

AttributeDecorator - adds rule to attribute

 57

Smart Variable

 58

Issue

Often when a field changes some action is required

Most of the time accessor methods handle this fine

Examples when not

Debugger - watch points
Simulations
Real-time tracking of business

Actions tied to State Change

 59

Dependent Notification
Persistence
Distribution
Caching
Constraint Satisfaction
Synchronization

Swift Property Observers

 60

class PositiveTemperature {
 var degreesFarenheit: Double = 0 {
 willSet(newDegree) {
 print("Changing the temperature")
 }

 didSet {
 if degreesFarenheit < 0 {
 degreesFarenheit = oldValue
 }
 }
 }
} var test = PositiveTemperature()

test.degreesFarenheit = 10 // Changing the temperature
test.degreesFarenheit // 10
test.degreesFarenheit = -20 // Changing the temperature
test.degreesFarenheit // 10

 61

Schema

 62

Schema Descriptor
Map
Database Scheme
Layout

How do you avoid hard-wiring the layouts of structures into your code?
How do you describe the layout of a structure, object, or database row?

Therefore, make a schema or map describing your data structures available at runtime

Participants

 63

Schema - collection of descriptors

Descriptor - describe layout of element
May contain attributes

display name, type, default value

Subject - objects being mapped by schema

Grapples - map between symbolic name to actual object

Attributes

Examples

 64

Database Object-Relational mapping
Hibernate, Spring, Active Record in Ruby on Rails

GUI Builders

JavaBeans - Descriptor

GraphQL

 65

Active Object Model

 66

Active Object Model

Object model that provides “meta” information about itself
so that it can be changed at runtime

Why

Both systems and their users must adapt quickly to changing requirements
Dynamic Objects allow for rapid alterations to your program
Users want the ability to change what they do on-the-fly
Changing a program to meet new business requirements is slow and complicated

Problems

 67

Active object-models can be
difficult to develop
hard to understand
hard to maintain

So include editors and other tools
 to assist with developing and manipulating the object model

