
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2020

Doc 18 Command Processor, Memento, Mediator, Facade
Nov 5, 2020

Copyright ©, All rights reserved. 2020 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Undo

3

Undo

Some examples

Counter

counter.increase(); //increase counter by 1
counter.decrease(); //decrease counter by 1

4

Undo

Some examples

Text editing

Replace "Should" with "Could" at start of 3rd sentence in 5 paragraph

Undo - Some Issues

5

Redo

Multiple undo

Command Processor Pattern

6

Command Processor manages the command objects

The command processor:

 Contains all command objects

 Schedules the execution of commands

 May store the commands for later undo

 May log the sequence of commands for testing purposes

 Uses singleton to insure only one instance

Structure

7

Client

Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Command

Processor

commandStack

doIt(command)
undoIt()

creates

transfer
command

performs

stores

Dynamics

8

Command
ProcessorClient

MakeBold
Command

Document

request

undo
request undoIt() undo()

delete()

restoreText()

getSelection()

makeBold()

do()
doIt()

create()

makeBold
command

Benefits

9

Flexibility in the way requests are activated

 Different user interface elements can generate the same kind of command object

 Allows the user to configure commands performed by a user interface element

Flexibility in the number and functionality of requests

 Adding new commands and providing for a macro language comes easy

Programming execution-related services

 Commands can be stored for later replay
 Commands can be logged
 Commands can be rolled back

Testability at application level

Concurrency

 Allows for the execution of commands in separate threads

Liabilities

10

Efficiency loss

Potential for an excessive number of command classes

 Try reducing the number of command classes by:

 Grouping commands around abstractions
 Unifying simple commands classes by passing the receiver object as a parameter

Complexity

 How do commands get additional parameters they need?

11

Memento

Memento

12

undo, rollbacks
Orginator
setMemento(Menmento m)
createMemento()
state

Memento
getState()
setState()
state

Caretaker
mementos

state=m->getState()

return new Memento(state)

Only originator:

Can access Memento’s get/set state methods
Create Memento

Store an object's internal state, so the object can be restored to this state later without
violating encapsulation

Example

13

package Examples;
class Memento{
 private Hashtable savedState = new Hashtable();

 protected Memento() {}; //Give some protection

 protected void setState(String stateName, Object stateValue) {
 savedState.put(stateName, stateValue);
 }

 protected Object getState(String stateName) {
 return savedState.get(stateName);
 }

 protected Object getState(String stateName, Object defaultValue) {
 if (savedState.containsKey(stateName))
 return savedState.get(stateName);
 else
 return defaultValue;
 }
}

Sample Originator

14

package Examples;
class ComplexObject {
 private String name;
 private int someData;
 private Vector objectAsState = new Vector();

 public Memento createMemento() {
 Memento currentState = new Memento();
 currentState.setState("name", name);
 currentState.setState("someData", new Integer(someData));
 currentState.setState("objectAsState", objectAsState.clone());
 return currentState;
 }

 public void restoreState(Memento oldState) {
 name = (String) oldState.getState("name", name);
 objectAsState = (Vector) oldState.getState("objectAsState");
 Integer data = (Integer) oldState.getState("someData");
 someData = data.intValue();
 }

15

Why not let the Originator save its old state?
class ComplexObject {
 private String name;
 private int someData;
 private Vector objectAsState = new Vector();
 private Stack history;

 public createMemento() {
 Memento currentState = new Memento();
 currentState.setState("name", name);
 currentState.setState("someData", new Integer(someData));
 currentState.setState("objectAsState", objectAsState.clone());
 history.push(currentState);
 }

 public void restoreState() {
 Memento oldState = history.pop();
 name = (String) oldState.getState("name", name);
 objectAsState = (Vector) oldState.getState("objectAsState");
 Integer data = (Integer) oldState.getState("someData");
 someData = data.intValue();
 }

16

Some Consequences

Expensive
Space

Narrow & Wide interfaces - Keep data hidden

class Originator {
 private String state;

 private class Memento {
 private String state;
 public Memento(String stateToSave)
 { state = stateToSave; }
 public String getState() { return state; }
 }

 public Object memento()
 { return new Memento(state);}

Class Memento {
 public:
 virtual ~Memento();
 private:
 friend class Originator;
 Memento();
 void setState(State*);
 State* GetState();

Using Clone to Save State

17

interface Memento extends Cloneable { }

class ComplexObject implements Memento {
 private String name;
 private int someData;

 public Memento createMemento() {
 Memento myState = null;
 try {
 myState = (Memento) this.clone();
 }
 catch (CloneNotSupportedException notReachable) {
 }
 return myState;
 }

 public void restoreState(Memento savedState) {
 ComplexObject myNewState = (ComplexObject)savedState;
 name = myNewState.name;
 someData = myNewState.someData;
 }
}

Copying Issues

18

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects

Shallow Copy Verse Deep Copy

19

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom
*

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

Original Objects

Deep Copy

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

aChair

aTable

Deeper Copy

Cloning Issues - C++ Copy Constructors

20

class Door {
 public:
 Door();
 Door(const Door&);
 virtual Door* clone() const;

 virtual void Initialize(Room*, Room*);
 // stuff not shown
 private:
 Room* room1;
 Room* room2;
 }

Door::Door (const Door& other) //Copy constructor {
 room1 = other.room1;
 room2 = other.room2;
 }

Door* Door::clone() const {
 return new Door(*this);
 }

Cloning Issues - Java Clone

21

Shallow Copy
class Door implements Cloneable {
 private Room room1;
 private Room room2;

 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
}

Deep Copy
public class Door implements Cloneable {
 private Room room1;
 private Room room2;

 public Object clone() throws CloneNotSupportedException {
 Door thisCloned =(Door) super.clone();
 thisCloned.room1 = (Room)room1.clone();
 thisCloned.room2 = (Room)room2.clone();
 return thisCloned;
 }
}

What if Protocol

22

Make a copy of the Originator

Perform operations on the copy

Check if operations invalidate the internal state of copy

If so discard the copy & raise an exception

Else perform the operations on the Originator

When there are complex validations or
performing operations that make it difficult to restore later

Memento & Functional Programming

23

Immutable data
Data that can not change
Functional languages have primarily immutable data

If data can not change
Don’t need memento pattern

Datomic

24

Database system where all data is immutable

Transactions become easy

Read and writes become independent

Historical data,
role backs are easy

Auditability

25

Mediator

26

Mediator
A mediator controls and coordinates the interactions of a group of objects

A

B

C

DE

A

B

C

DE

Mediator

27

Structure

Mediator

ConcreteMediator

Colleague

ConcreteColleague1 ConcreteColleague1

Participants

28

Mediator

Defines an interface for communicating with Colleague objects

ConcreteMediator

Implements cooperative behavior by coordinating Colleague objects

Knows and maintains its colleagues

Colleague classes

Each Colleague class knows its Mediator object

Each colleague communicates with its mediator whenever it would
have otherwise communicated with another colleague

Motivating Example - Dialog Boxes

29

aClient
director

aListBox
director

aButton
director

anEntryField
director

aFontDialogDirector

30

How does this differ from a God Class?

31

When to use the Mediator Pattern

When a set of objects communicate in a well-defined but
complex ways

When reusing an object is difficult because it refers to and
communicates with many other objects

When a behavior that's distributed between several classes
should be customizable without a lot of subclassing

Classic Mediator Example

32

Simpler Example

33

Non Mediator Solution

34

class OKButton extends Button {
TextField password;
TextField username;
Database userData;
Model application;

protected void processEvent(AWTEvent e) {
if (!e.isButtonPressed()) return;
e.consume();
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

http://java.sun.com/javase/6/docs/api/java/awt/AWTEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/AWTEvent.html

Mediator Solution

35

class LoginDialog extends Panel {
TextField password;
TextField username;
Database userData;
Button ok, cancel;

protected void actionPerformed(ActionEvent e) {
if (!e.isButtonPressed() or e.getSource() != ok) return;
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

Mediator

http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html#actionPerformed(java.awt.event.ActionEvent)
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html#actionPerformed(java.awt.event.ActionEvent)
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html

What is Different?

36

Non Mediator Example

Special Button class
OK button coupled to text fields

Mediator Example

No specialButton class
LoginDialog coupled to text fields

Logic moved from button class to LoginDialog

ReactiveX

37

In some cases ReactiveX reduces mediator to setting up streams

38

Facade

39

40

Size

Item
Source Lines of Code

(Millions)

F-22 Raptor US jet fighter 1.7

Boeing 787 6.5

Chevy Volt - Embedded Code 10

S-class Mercedes-Benz
radio & navigation system

20

Mac OS 10.4 86

New automobile ~100

Debian 5.0 342

Tesla Linux + ?

Design Patterns text contains under 8,000 lines

The Facade Pattern

41

Client

Facade

subsystem
classes

Client

???

Create a class that is the interface to the subsystem

Clients interface with the Facade class to deal with the subsystem

Consequences of Facade Pattern

42

It hides the implementation of the subsystem from clients

It promotes weak coupling between the subsystems and its clients

It does not prevent clients from using subsystem classes directly, should it?

Facade does not add new functionality to the subsystem

Public versus Private Subsystem classes

43

Some classes of a subsystem are
 public
 facade
 private

Compiler Example

44

The VisualWorks Smalltalk compiler system has 75 classes

Programmers only use Compiler, which uses the other classes

Compiler evaluate: '100 factorial'

| method compiler |
method := 'reset
 "Resets the counter to zero"
 count := 0.'.

compiler := Compiler new.
compiler
 parse:method
 in: Counter
 notifying: nil

Objective-C Class Clusters & Facade

45

