
CS 420 Advanced Programming Languages�
Fall Semester, 2022�

Doc 10 Clojure Introduction�
Aug 29, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

2

What is Functional Programming

Elements of Functional Programming

3

Pure Functions

First Class Functions

Immutability

Higher-Order Functions

Recursion

Lazy Evaluation

Currying

Memoization

Destructuring

Collection Pipelines

List Compressions

Raw Data + functions

Raw Data + functions

4

class Person {

private String firstName;

private String lastName;

private int age;

{:first-name “Roger”

 :last-name “Whitney”

 :age 21 }

filter (select), remove

map (fold)

reduce

transducers

Pure Functions

5

Functions with no side-effects

Only depend on arguments

Don't change state

Why important

class Foo {

int bar

public int notPure(int y) {

return bar + y

}

public void alsoNotPure(int y) {

bar = y

}

Easier to

debug

test

understand program

OO makes code understandable by
encapsulating moving parts.

FP makes code understandable by minimizing
moving parts.

Michael Feathers

First Class Functions

6

Functions can be

Assigned to variables

Passed as arguments

Returned from functions

Anonymous functions

Lambdas

Closures

Why important

Flexibility

Generality

Higher-Order Functions

7

Functions that operate on functions Why important

Fewer details/

higher level logic

Concurrency

Immutability

8

Data structures can not be modified

Like Java's Strings

Why important

Concurrency

Easier to

debug

test

understand program

No need for private data

OO makes code understandable by
encapsulating moving parts.

FP makes code understandable by minimizing
moving parts.

Michael Feathers

Lazy Evaluation

9

Operations & functions evaluated

When used

Not when called

Why important

Simplifies logic

(def dice-rolls (map inc (repeatedly #(rand-int 6))))

(take 10 dice-rolls)

(2 5 5 4 6 6 3 4 2 5)

Type Checking

10

Strongly Typed

All type errors are detected

Rust is strongly typed at compile time - static type checking

Duck Typing

If a value can perform the operation it is the correct type

Clojure does duck typing

(+ a b)

Clojure

11

Developed by Rich Hickey

Started 2007

Variant of Lisp

Functional programming language

Dynamic typing

Interactive development - REPL

Tight Java Integration

Active development community

Variants

12

Clojure

Java

ClojureScript

JavaScript .NET

Base language the same

Few changes due differences between Java/Javascript

Development Environment

13

IntelliJ

Cursive plugin

https://cursiveclojure.com

Visual Studio Code

Calva plugins

Command Line

Emacs

CIDER

Vim

Fireplace

Leiningen

Lots of Irritating Superfluous Parenthesis-LISP

14

But only () and they build up

(+ 5 (- 2 (/ 4 (* 2 (inc (read-string "123"))))))

Use editor that is parenthesis aware

Useful forms

let

->

reverse([1, 2, 3])

(reverse [1, 2, 3]) But not more than Java

Resources

15

http://clojure.org

Clojure Home Page

Clojure Cookbook

Safari Books On-line

http://proquest.safaribooksonline.com.libproxy.sdsu.edu/

Elements of Clojure Code

16

symbols

keywords

literals

lists

vectors

maps

sets

functions

macros

special forms (functions)

REPL

17

Read-Eval-Print Loop

"hi there"

42

[1 2 3]

(+1 2)

Executable code (program) in repl

Clojure Function Calls

18

foo(1, "cat")

Function

Name

Arguments

C function call

(foo 1 "cat") Clojure function call

Some Basic Operations

19

Function Result

(+ 1 2) 3

(+ 1 2 4 6) 13

(= "cat" "dog") false

(= 1 1) true

(= 1 1 2) false

(even? 8) true

(/ 10 2) 5

(/ 10 2 3) 5/3

(bit-shift-left 4 1) 8

Operators

20

No built-in operators

Just functions

(if (> x y)

"cat"

"dog")

(if (> x y)

"cat"

"dog")

true value

false value

Condition

Assignment

21

(def a 10)

(def b (+ a 12))

(def a 20)

No built-in operators

Just functions

Called a binding which is sort of like assignment

No Precedence

22

a - b * c + d

(- a (+ (* b c) d)) Clojure expressions read inside out

Will see several ways to change this

23

Recursion

Higher Order Functions

The Functional Way

Vectors

24

[4 "cat" \c]

[4, "cat", \c]

[]

Expandable, indexed list

Fast insert at end

Expensive insert in front

Fast indexed lookup

Vectors

25

(vector 8 4 2) [8 4 2]

(nth [:a :b :c] 2) :c

(first [1 2 3]) 1

(second [1 2 3]) 2

(third [1 2 3]) Error

(last [1 2 3]) 3

(rest [1 2 3]) (2 3)

Compute the Sum

26

public float sum(ArrayList<float> list) {

float sum = 0;

for (int k = 0; k < list.length; k++)

sum = sum + list.get(k);

return sum;

}

Does not work in

Functional World

No “for” statement

No side effects

Recursion replaces Iteration

27

(defn sum-1

 [list]

 (if (empty? list)

 0

 (+ (first list) (sum-1 (rest list)))))

(sum-1 [1 2 3])	 	 	 	 6

(sum-1 (range 9900))		 	 Stack over flow

(range 9900) 	 	 [0 1 2 3 4 5 ... 9898 9899]

(first list) returns first element in list

(rest list) returns list without the first element

Second Try

28

(defn sum-2

 [accumulator list]

 (if (empty? list)

 accumulator

 (sum-2 (+ accumulator (first list))

 (rest list))))

(sum-2 0 [1 2 3])		 	 6

(sum-2 0 (range 9900))	 Stack over flow

Recursive

29

(sum-1 [1 2 3])

(+ 1 (sum-1 [2 3]))

(+ 1 (+ 2 (sum-1 [3])))

(+ 1 (+ 2 (+ 3 (sum-1 []))))

(+ 1 (+ 2 (+ 3 0)))

(+ 1 (+ 2 3))

(+ 1 5)

6

(sum-2 0 [1 2 3])

(sum-2 1 [2 3])

(sum-2 3 [3])

(sum-2 6 (sum-2 [])

6

Tail Recursion Optimization

30

In a recursive function implementing a iterative process

The compiler can optimize the recursion into iteration

But JVM does not support tail recursion optimization

recur

31

(defn sum-3

 [accumulator list]

 (if (empty? list)

 accumulator

 (recur (+ accumulator (first list))

 (rest list))))

Replace the recursive call with recur

recur will call the function

But Clojure will convert to iteration

(sum-3 0 [1 2 3])		 	 	 6

(sum-3 0 (range 9900))	 	 49000050

(sum-3 0 (range 100000))		 4999950000

One Name, Multiple Implementations

32

(defn sum-4

 ([list]

 (sum-4 0 list))

 ([accumulator list]

 (if (empty? list)

 accumulator

 (recur (+ accumulator (first list))

 (rest list)))))

(sum-4 [1 2 3])	 	 	 	 6

(sum-4 0 [1 2 3])		 	 	 6

(sum-4 0 (range 100000))		 4999950000

(sum-4 (range 100000))	 	 4999950000

Major Points

33

Recursion replaces “for” loops

Accumulators

Tail recursion optimization (recur)

But this is not the way to implement sum

reduce

34

(reduce + [1 2 3 4 5])

What versus How

35

(reduce + [1 2 3 4 5]) public float sum(ArrayList<float> list) {

float sum = 0;

for (int k = 0; k < list.length; k++)

sum = sum + list.get(k);

return sum;

}

What How

Less typing

Fewer details

Less cognitive load

More general solution

Code can be optimized

Higher Order Functions

36

(reduce + [1 2 3 4 5])

Function that acts on functions

Timing tests

37

Code Time

(sum-3 0 (range 100000)) 54450.6 msecs

(sum-4 0 (range 100000)) 26.1 msecs

(reduce + (range 100000)) 6.5 msecs

Code Time

(sum-4 data) ~55 msecs

(reduce + data) ~22.5 msecs

(def data (range 1000000))

The Functional Way

38

Raw data Rich set of powerful functions on data

vectors

maps (hash table)

sequences

map

map-indexed

filter

reduce

remove

keep

zipper

drop-while

take-while

partition

interpose

split-at

etc.

Immediate Goals

39

Recursion

Master use of built-in functions

Get comfortable with higher-order functions.

Clojure API

40

http://clojure.org/cheatsheet

http://clojure.org/cheatsheet

https://4clojure.oxal.org/

41

http://www.4clojure.com

