
CS 420 Advanced Programming Languages�
Fall Semester, 2022�

Doc 15 Clojure Lists, Battleship & Functions�
Oct 6, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Lists

2

'(1 2 3)

'("cat" {:a 1})

'(+ 1 2)

Linked List

Fast insert & remove at front

Lists

3

(list 8 4 2) (8 4 2)

(nth '("a" "b" "c") 2) "c"

('("a" "b" "c") 2) Error

(.indexOf '("a" "b" "c") "b") 1

(peek '("a" "b" "c")) "a"

(pop '("a" "b" "c")) ("b" "c")

(conj '(1 2 3) 4) (4 1 2 3)

(class '(1)) clojure.lang.PersistentList

Why Does the Parenthesis Come First?

4

(max 2 4 1) verses max(2, 4, 1)

All Clojure (and Lisp) programs are valid Clojure (Lisp) data structures

(defn nthfirst

 "Drop the last n elements"

 [coll n]

 (-> coll

 reverse

 (nthrest n)

 reverse))

Why is this Important?

5

Clojure & Lisp programs can generate code and run the new code

If a program is to learn, it needs to change

Lisp-based languages allow programs to change their code

Why the Single Quote

6

'(+ 1 2) verses (+ 1 2)

All Clojure programs are just lists

Reader/interpreter/compiler evaluates all lists

Single quote turns off evaluation of the list

Homoiconicity - Code-as-Data

7

Clojure programs are represented by Clojure data structures

List structure is the Clojure syntax

Makes it easy for Clojure programs to modify Clojure programs

Macros

Defining a function

8

(def add-one (fn [n] (+ 1 n))

(add-one 5)

name function def

argument function body

Defining a function - Compact version

9

(def add-one (fn [n] (+ 1 n)))

(add-one 5)

(defn add-one

[n]

(+ 1 n))

Valid function names

10

(defn பன்னிெரண்டு-ேசர்க்க

[n]

(+ 12 n))

Function definitions are just Clojure data structures

Function names are just symbols

So any valid symbol can be used as a function name

defn Format

11

(defn function-name

"Doc string"

[arg1 arg2 … argN]

(form1)

(form2)

…

(formN))

Doc Strings

12

(doc pop)

(clojure.repl/doc pop)

Prints doc string in REPL

(find-doc "pop")

(clojure.repl/find-doc "pop"

Finds functions related to "pop"

Comments

13

; a semi-colon starts a comment that goes to end of the line

#_ when prepended to a form makes the entire form a comment

(defn foo

 [n]

 #_(if (> 5 n)

 (println "in if")

 (println "else"))

 (+ 10 n))

Comment starts

Comment ends

Explain This

14

(defn foo

 [n]

 "How does this work? Not a compile error."

 (if (> 5 n)

 (println "in if")

 (println "else"))

 "This is not a doc comment"

 (+ 10 n))

And This?

15

(defn foo

 [n]

 (if (> 5 n)

 "What happens now?"

 (println "in if")

 (println "else"))

 "This is not a doc comment"

 (+ 10 n))

Recall

16

(defn function-name

"Doc string"

[arg1 arg2 … argN]

(form1)

(form2)

…

(formN))

Anonymous Function - Lambda

17

Function not bound to symbol

(fn [a b] (< (first a) (first b)))

((fn [a b] (< (first a) (first b))) [2 3] [5])

(fn [args] (form1) (form2)…(formn))

((fn [a b]

(println a b)

(< (first a) (first b))) [2 3] [5])

Short Syntax for Lambda

18

(fn [a b] (< (first a) (first b)))

#(< (first %1) (first %2)) %n -> n'th argument

#(+ 2 %) if only one argument can use %

Passing Functions as Arguments

19

(sort < [3 1 2])

(sort > [3 1 2])

(sort (fn [a b] (< a b)) [3 1 2])

(sort #(< %1 %2) [3 1 2])

(sort (fn [a b] (compare (str a) (str b))) [4 3 16])

(sort #(compare (str %1) (str %2)) [4 3 16])

Closure

20

(defn adder

 [n]

 #(+ n %))

(def add-5 (adder 5))

(add-5 10)

function + reference to its environment

Returns 15

21

Battleship Example

The Problem

22

Context - Writing a battleship game

Need a function that determines

Is an enemy ship within range of our ships weapon

But weapon has a blast area so cannot use weapon if

Enemy ship is to close to us or other friendly ships

First Pass

23

range

)LJXUH ���� 7KH SRLQWV LQ UDQJH RI D VKLS ORFDWHG DW WKH RULJLQ

Assume we are at origin

Given a point & range

Is point within range

Point - [x y]

(defn in-range-1

 [position range]

 (let [pos-x (first position)

 pos-y (last position)

 target-distance (Math/sqrt (+ (* pos-x pos-x) (* pos-y pos-y)))]

 (< target-distance range)))

(in-range-1 [1 1] 1)

(in-range-1 [1 1] 2)

false

true

Second Pass

24

Let our position be any location

(defn in-range-2

 [position own-position range]

 (let [pos-x (first position)

 pos-y (last position)

 own-x (first own-position)

 own-y (last own-position)

 dx (- pos-x own-x)

 dy (- pos-y own-y)

 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]

 (< target-distance range)))

This is a Java program

using Clojure syntax

Second Pass - a

25

Using destructuring

(defn in-range-2a

 [[pos-x pos-y] [own-pos-x own-pos-y] range]

 (let [dx (- own-pos-x pos-x)

 dy (- own-pos-y pos-y)

 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]

 (< target-distance range)))

What do we gain? lose?

Second Pass - b

26

With map

(defn in-range-2b

 [position own-position range]

 (let [[dx dy] (map - position own-position)

 target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]

 (< target-distance range)))

What do we gain? lose?

Second Pass - c

27

(defn in-range-2c

 [position own-position range]

 (let [delta (map - position own-position)

 target-distance (Math/sqrt (reduce + (map * delta delta)))]

 (< target-distance range)))

Using map & reduce

What do we gain? lose?

Third Pass

28

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn in-range-3

 [safe-distance range own-position position friend-position]

 (let [delta (map - position own-position)

 target-distance (Math/sqrt (reduce + (map * delta delta)))

 friend-delta (map - position friend-position)

 target->friend (Math/sqrt (reduce + (map * friend-delta friend-delta)))]

 (and

 (< safe-distance target->friend)

 (< safe-distance target-distance range))))

Third Pass

29

minD

range

Friendly

)LJXUH ���� $YRLGLQJ HQJDJLQJ HQHPLHV WRR FORVH WR WKH VKLS

(defn distance-between

 [a b]

 (let [delta (map - a b)]

 (Math/sqrt (reduce + (map * delta delta)))))

(defn in-range-3a

 [safe-distance range self target friend]

 (and

 (< safe-distance (distance-between friend target))

 (< safe-distance (distance-between self target) range)))

(def in-torpedo-range (partial in-range-3a 1.5 20))

(def in-cannon-range (partial in-range-3a 3 500))

What is the Abstraction?

30

What are we doing?

Dealing with circles shapes

Union

Intersection

Complement

Is a point in a shape

circle - returns a function

31

(defn circle

 ([radius]

 (circle [0 0] radius))

 ([center radius]

 (fn

 [point]

 (<= (distance-between center point) radius))))

(def small-circle (circle 1))

(small-circle [0.5 0])	 	 	 true

(small-circle [1 2])	 	 	 false

outside

32

(defn outside

 [shape]

 (complement shape))

(def small-circle (circle 1))

((outside small-circle) [0.5 0])	 	 	 false

((outside small-circle) [1 2])	 	 	 true

union

33

(defn union

 ([shape]

 shape)

 ([shape-a shape-b]

 (fn [point]

 (or (shape-a point) (shape-b point))))

 ([shape-a shape-b & shapes]

 (fn [point]

 (let [all-shapes (conj shapes shape-a shape-b)]

 (reduce #(or %1 (%2 point)) false all-shapes)))))

Higher Level in range

34

(defn in-range-4

 [safe-distance range self target friend]

 (let [self-safe-zone (outside (circle self safe-distance))

 friend-safe-zone (outside (circle friend safe-distance))

 weapon-area (circle self range)

 target-zone (intersection weapon-area friend-safe-zone self-safe-zone)]

 (target-zone target)))

Read from inside out

35

(defn calculate

 	 [a b c d]

 (+ (/ (+ a b) c) d))

let

->

->>

let

36

Allows you to

compute partial results

give results names

Compute average of three numbers

(defn average

[a b c]

(/ (+ a b c) 3))

(defn average

 [a b c]

 (let [sum (+ a b c)

 size 3]

 (/ sum size)))

Using let

37

(defn calculate

 	 [a b c d]

 (+ (/ (+ a b) c) d))

(defn calculate-2

 [a b c d]

 (let [a+b (+ a b)

 divide-c (/ a+b c)

 plus-d (+ divide-c d)]

 plus-d))

-> Threading macro

38

(-> x)

(-> x form1 … formN)

Inserts x as second element in form1

Then inserts form1 as second element in form2

etc.

-> Example

39

(def c 5)

(-> c

(+ 3)

(/ 2)

(- 1))

(+ c 3)

(/ 8 2)

(- 4 1)

(- (/ (+ c 3) 2) 1)

-> Example

40

(def c 5)

(-> c

(+ 3)

(/ 2)

dec)

(+ c 3)

(/ 8 2)

(dec 4)

(dec (/ (+ c 3) 2))

-> Example

41

(-> "a b c d"

.toUpperCase

(.replace "A" "X")

(.split " ")

first)

(.toUpperCase "a b c d")

(.replace "A B C D" "A" "X")

(.split "X B C D" " ")

(first {"X", "B", "C", "D"})

-> Example

42

(def person

 {:name "Mark Volkmann"

 :address {:street "644 Glen Summit"

 :city "St. Charles"

 :state "Missouri"

 :zip 63304}

 :employer {:name "Object Computing, Inc."

 :address {:street "12140 Woodcrest Dr."

 :city "Creve Coeur"

 :state "Missouri"

 :zip 63141}}})

(-> person :employer :address :city)

->> Threading macro

43

(->> x)

(->> x form1 … formN)

Inserts x as last element in form1

Then inserts form1 as last element in form2

etc.

->> Example

44

(def c 5)

(->> c

(+ 3)

(/ 2)

(- 1))

(+ 3 c)

(/ 2 8)

(- 1 1/4)

as-> Allow Threading in different locations

45

(as-> 5 c

(+ 3 c)

(/ c 2)

(- c 1))

(+ 3 5)

(/ 8 2)

bind 8 to c

bind 5 to c

bind 4 to c

(- 4 1) return 3

Multiple lines

46

(defn average

	 [a b c]

 (println (str "a is " a)

	 (+ 1 3)

	 (/ (+ a b c) 3))

(average 1 2 3) returns 2

prints on standard out

a is 1

Why not use def & multiple lines?

47

(defn average

 [a b c]

 (let [sum (+ a b c)

 size 3]

 (/ sum size)))

(average 1 2 3) 2

sum Error

size Error

(defn average-bad

 [a b c]

 (def sum (+ a b c))

 (def size 3)

 (/ sum size))

(average-bad 1 2 3) 2

sum 6

size 3

def defines global names/values let defines local names/values

Don't use def inside functions

Symbols, Values & Binding

48

Symbols reference a value (def foo "hi")

(def bar (fn [n] (inc n)))foo & bar are symbols

They are bound to values

Expession Evaluated Result

foo "hi"

'foo foo

bar fn

(bar 12) 13

Binding & Shadowing

49

Before function x= 1
(def x 1)

(defn shadow

 [x]

 (println "Start function x=" x)

 (let [x 20]

 (println "In let x=" x))

 (println "After let x=" x))

(println "Before function x=" x)

(shadow 10)

(println "After function x=")

Start function x= 10

In let x= 20

After let x= 10

After function x= 1

Bindings, Shadowing & Functions

50

(dec 10)

(let [dec "December"

 test (dec 10)]

 test)

Compile Error

(dec 10)

(def dec "December")

(dec 10)

(clojure.core/dec 10)

Compile Error

(def + -)

(+ 4 3) 1

