CS 420 Advanced Programming Languages
Fall Semester, 2022
Doc 15 Clojure Lists, Battleship & Functions
Oct 6, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Lists

Linked List '(123)
Fast insert & remove at front '("cat" {:a 1})
(+12)

Lists

(list 8 4 2) (8 4 2)
(nth '("a" "b" "c") 2) "c"
(‘'("a" "b" "c") 2) Error
(.indexOf '("a" "b" "c") "b") I
(peek '("a" "b" "c")) "a"

(pPop ("a" "b" "c"))

(b""<")

(conj (1 2 3) 4)

(4123)

(class (1))

clojure.lang.PersistentList

Why Does the Parenthesis Come First?

(max 24 1) verses max(2, 4, 1)

All Clojure (and Lisp) programs are valid Clojure (Lisp) data structures

(defn nthfirst
"Drop the last n elements”
[coll n]
(-> coll
reverse
(nthrest n)
reverse))

Why is this Important?

Clojure & Lisp programs can generate code and run the new code
If a program is to learn, it needs to change

Lisp-based languages allow programs to change their code

Why the Single Quote

'(+12)verses (+12)

All Clojure programs are just lists
Reader/interpreter/compiler evaluates all lists

Single quote turns off evaluation of the list

Homoiconicity - Code-as-Data

Clojure programs are represented by Clojure data structures
List structure is the Clojure syntax
Makes it easy for Clojure programs to modify Clojure programs

Macros

Defining a function

name function def

J l

(def add-one (fn [n] (+ 1 n))

[

argument function body

(add-one 5)

Defining a function - Compact version

(def add-one (fn [n] (+ 1 n)))

(defn add-one
[n]
(+1n))

(add-one 95)

Valid function names

Function definitions are just Clojure data structures

Function names are just symbols

So any valid symbol can be used as a function name

(defn ueeflClgevor(H-CFidb

[n]
(+ 12 n))

|0

defn Format

(defn function-name
"Doc string”
[arg1 arg2 ... argN]
(form1)
(form2)

&é)rmN))

Doc Strings

(doc pop) Prints doc string in REPL
(clojure.repl/doc pop)

(find-doc "pop")

F' f t I t t " "
(clojure.repl/find-doc "pop" inds functions related to "pop

12

Comments

; @ semi-colon starts a comment that goes to end of the line

when prepended to a form makes the entire form a comment

(defn foo

n
Comment starts > ;[#_](if (> 5n)
(println "in if")
(println "else")
(+ 10 n))

Comment ends

13

Explain This

(defn foo
[n]
"How does this work? Not a compile error."
(if (> 5 n)
(println "in if")
(printin "else"))
"This is not a doc comment”

(+ 10 n))

14

And This?

(defn foo

[n]

(if (> 5 n)
"What happens now?"
(println "in if")
(printin "else"))

"This is not a doc comment”

(+ 10 n))

|5

Recall

(defn function-name
"Doc string”
[arg1 arg2 ... argN]
(form1)
(form2)

&(‘)rmN))

16

Anonymous Function - Lambda

Function not bound to symbol

(fn [args] (form1) (form2)...(formn))
(fn [a b] (< (first a) (first b)))
((fn [a b] (< (first @) (first b))) [2 3] [5])

((fn [a b]
(printin a b)
(< (first a) (first b))) [2 3] [5])

|7

Short Syntax for Lambda

(fn [a b] (< (first a) (first b)))

l

#(< (first %1) (first %2)) %n ->n'th argument

H#(+ 2 %) if only one argument can use %

18

Passing Functions as Arguments

(sort < [3 12])
(sort > [3 1 2])

(sort (fn [a b] (< a b)) [3 1 2])

(sort #(< %1 %2) [3 1 2])

(sort (fn [a b] (compare (str a) (str b)) [4 3 16])

(sort #(compare (str %1) (str %2)) [4 3 16])

19

Closure

(defn adder
[n]
#(+ n %))
(def add-5 (adder 5))

(add-5 10)

20

function + reference to its environment

Returns 15

Battleship Example

21

The Problem

Context - Writing a battleship game

Need a function that determines
Is an enemy ship within range of our ships weapon
But weapon has a blast area so cannot use weapon if
Enemy ship is to close to us or other friendly ships

22

23

First Pass

Assume we are at origin Point - [x y]

range

Given a point & range /

Is point within range

(defn in-range-1
[position range]
(let [pos-x (first position)
pos-y (last position)

target-distance (Math/sqrt (+ (* pos-x pos-x) (* pos-y pos-y)))]
(< target-distance range)))

(in-range-1[1 1] 1) false

(in-range-1[1 1] 2) true

Second Pass

range
ownPositiony: - . /

ownPosition.x

Let our position be any location

(defn in-range-2
[position own-position range]
(let [pos-x (first position)
pos-y (last position)
own-X (first own-position) This is a Java program

own-y (last own-position) using Clojure syntax
dx (- pos-x own-X)

dy (- pos-y own-y)
target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
(< target-distance range)))

24

Second Pass - a

range
ownPositiony: - . /

ownPosition.x

Using destructuring

(defn in-range-2a
[[pOs-x pos-y] [own-pos-x own-pos-y] range]
(let [dx (- own-pOs-X pOS-X)
dy (- own-pos-y pos-y)
target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
(< target-distance range)))

What do we gain? lose?

25

Second Pass - b

With map

(defn in-range-2b
[position own-position range]
(let [[dx dy] (map - position own-position)
target-distance (Math/sqrt (+ (* dx dx) (* dy dy)))]
(< target-distance range)))

What do we gain? lose?

26

range
ownPositiony: - . /

]
ownPosition.x

Second Pass - ¢

range
ownPositiony: - . /

]
ownPosition.x

Using map & reduce

(defn in-range-2c
[position own-position range]
(let [delta (map - position own-position)
target-distance (Math/sqrt (reduce + (map * delta delta)))]
(< target-distance range)))

What do we gain? lose?

27

Third Pass

(defn in-range-3
[safe-distance range own-position position friend-position]
(let [delta (map - position own-position)
target-distance (Math/sqgrt (reduce + (map * delta delta)))
friend-delta (map - position friend-position)
target->friend (Math/sqrt (reduce + (map * friend-delta friend-delta)))]
(and
(< safe-distance target->friend)
(< safe-distance target-distance range))))

28

Third Pass

[a b]
(let [delta (map - a b)]
(Math/sqgrt (reduce + (map * delta delta)))))

(defn distance-between \ @

(defn in-range-3a
[safe-distance range self target friend]
(and
(< safe-distance (distance-between friend target))
(< safe-distance (distance-between self target) range)))

29

What is the Abstraction?

What are we doing?

Dealing with circles

30

shapes

Union
Intersection
Complement

Is a point in a shape

circle - returns a function

(defn circle
([radius]
(circle [0 0] radius))
([center radius]
(fn
[point]
(<= (distance-between center point) radius))))

(def small-circle (circle 1))

(small-circle [0.5 0]) true
(small-circle [1 2]) false

31

outside

(defn outside
[shape]
(complement shape))

(def small-circle (circle 1))

((outside small-circle) [0.5 0])
((outside small-circle) [1 2])

32

false
true

union

(defn union
([shape]
shape)

([shape-a shape-b]
(fn [point]
(or (shape-a point) (shape-b point))))
([shape-a shape-b & shapes]
(fn [point]
(let [all-shapes (conj shapes shape-a shape-b)]
(reduce #(or %1 (%2 point)) false all-shapes)))))

33

Higher Level in range

(defn in-range-4
[safe-distance range self target friend]
(let [self-safe-zone (outside (circle self safe-distance))
friend-safe-zone (outside (circle friend safe-distance))
weapon-area (circle self range)
target-zone (intersection weapon-area friend-safe-zone self-safe-zone)]
(target-zone target)))

34

Read from inside out

(defn calculate
[a b cd]
(+(/(+ab) c)d))

35

let

->>

let

Allows you to
compute partial results
give results names

Compute average of three numbers

(defn average
[a b C]
(/(+abc)3))

36

(defn average
[a b C]
(let [sum (+ a b c)
size 3]
(/ sum size)))

Using let

(defn calculate

37

[a b cd]
(+ (/(+ab) c)d))

(defn calculate-2
[a b cd]
(let [a+b (+ a b)
divide-c (/ a+b c)
plus-d (+ divide-c d)]
plus-d))

-> Threading macro

(-> X)
(-> x form1 ... formN)

Inserts x as second element in form1
Then inserts form1 as second element in form2

etc.

38

-> Example

39

(-(/(+c3)2)1)

-> Example

(def c 5)

(+3)
(/2)
dec)

40

(dec (/ (+ c 3) 2))

(+¢3)
(/ 8 2)
(dec 4)

-> Example

(_> "a b C dll
toUpperCase
(.replace "A" "X")

(.split" ")
first)

4]

(
(
(
(

toUpperCase "a b c d")
replace "AB C D" "A" "X")
split"XBCD" "")

first {"X", "B", "C", "D"})

-> Example

(-> person :employer :address :city)

(def person
{:name "Mark Volkmann"
-address {:street "644 Glen Summit"
.city "St. Charles”
.state "Missouri”
:zip 63304}
.employer {:name "Object Computing, Inc."
-address {:street "12140 Woodcrest Dr."
.city "Creve Coeur”
.state "Missouri”
:zip 63141}}})

42

->> Threading macro

(> x)
(->> x form1 ... formN)

Inserts x as last element in form
Then inserts form1 as last element in form2

etc.

43

->> Example

(def c 5)

(->> C
(+3) (+3 ¢)
(/2) (/ 2 8)
1) (- 1 1/4)

44

as-> Allow Threading in different locations

(as->5cC bind5toc
(+3c) (+ 3 5) bind 8 to ¢
(/c2) (/ 8 2) bind 4 to ¢

(-c1)) (-4 1)

return 3

45

Multiple lines

(defn average
[a b C]
(printin (str "ais " a)
(+13)
(/(+abc)3))

(average 1 2 3)

46

returns 2
prints on standard out
ais 1

Why not use def & multiple lines?

(defn average-bad

def defines global names/values

Don't use def inside functions

47

[a b C]
(def sum (+ a b c))

(def size 3)
(/ sum size))

(average-bad | 2 3)
sum

size

2

(defn average
[a b C]
(let [sum (+ a b c)
size 3]
(/ sum size)))

(average | 2 3)
sum Error

size Error

let defines local names/values

Symbols, Values & Binding

Symbols reference a value
foo & bar are symbols

They are bound to values

48

(def foo "hi")

(def bar (fn [n] (inc n)))

Binding & Shadowing

—> (defx 1)
Before function x= 1

(defn shadow

[X]
® (println "Start function x=" x)
(let [x 20]

(printin "In let x=" x)) After let x= 10
(printin "After let x=" x))

Start function x= 10

In let x= 20

After function x= 1

(printin "Before function x=" x)
(shadow 10)
(printin "After function x=")

49

Bindings, Shadowing & Functions

(dec 10) (dec 10)
(let [dec "December” (def dec "December")
test (dec 10)]
test) (dec 10) Compile Error
Compile Error (clojure.core/dec 10)
(def + -)

(+4 3) 1

50

