
CS 420 Advanced Programming Languages
Fall Semester, 2022

Doc 16 Functions, Some Concurrency
Oct 20, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Stop Writing Dead Programs

2

Jack Rusher (Strange Loop 2022)

https://www.youtube.com/watch?v=8Ab3ArE8W3s

https://www.youtube.com/watch?v=8Ab3ArE8W3s

Read from inside out

3

(defn calculate
 [a b c d]
 (+ (/ (+ a b) c) d))

let
->
->>

let

4

Allows you to
compute partial results
give results names

Compute average of three numbers

(defn average
[a b c]
(/ (+ a b c) 3))

(defn average
 [a b c]
 (let [sum (+ a b c)
 size 3]
 (/ sum size)))

Using let

5

(defn calculate
 [a b c d]
 (+ (/ (+ a b) c) d))

(defn calculate-2
 [a b c d]
 (let [a+b (+ a b)
 divide-c (/ a+b c)
 plus-d (+ divide-c d)]
 plus-d))

-> Threading macro

6

(-> x)
(-> x form1 … formN)

Inserts x as second element in form1

Then inserts form1 as second element in form2

etc.

-> Example

7

(def c 5)

(-> c

(+ 3)

(/ 2)

(- 1))

(+ c 3)

(/ 8 2)

(- 4 1)

(- (/ (+ c 3) 2) 1)

-> Example

8

(def c 5)

(-> c

(+ 3)

(/ 2)

dec)

(+ c 3)

(/ 8 2)

(dec 4)

(dec (/ (+ c 3) 2))

-> Example

9

(-> "a b c d"

.toUpperCase

(.replace "A" "X")

(.split " ")

first)

(.toUpperCase "a b c d")

(.replace "A B C D" "A" "X")

(.split "X B C D" " ")

(first {"X", "B", "C", "D"})

-> Example

10

(def person
 {:name "Mark Volkmann"
 :address {:street "644 Glen Summit"
 :city "St. Charles"
 :state "Missouri"
 :zip 63304}
 :employer {:name "Object Computing, Inc."
 :address {:street "12140 Woodcrest Dr."
 :city "Creve Coeur"
 :state "Missouri"
 :zip 63141}}})

(-> person :employer :address :city)

->> Threading macro

11

(->> x)
(->> x form1 … formN)

Inserts x as last element in form1

Then inserts form1 as last element in form2

etc.

->> Example

12

(def c 5)

(->> c

(+ 3)

(/ 2)

(- 1))

(+ 3 c)

(/ 2 8)

(- 1 1/4)

as-> Allow Threading in different locations

13

(as-> 5 c

(+ 3 c)

(/ c 2)

(- c 1))

(+ 3 5)

(/ 8 2)

bind 8 to c

bind 5 to c

bind 4 to c

(- 4 1) return 3

Multiple lines

14

(defn average
 [a b c]
 (println (str "a is " a)
 (+ 1 3)
 (/ (+ a b c) 3))

(average 1 2 3) returns 2
prints on standard out

a is 1

Why not use def & multiple lines?

15

(defn average
 [a b c]
 (let [sum (+ a b c)
 size 3]
 (/ sum size)))

(average 1 2 3) 2

sum Error

size Error

(defn average-bad
 [a b c]
 (def sum (+ a b c))
 (def size 3)
 (/ sum size))

(average-bad 1 2 3) 2

sum 6

size 3

def defines global names/values let defines local names/values

Don't use def inside functions

Symbols, Values & Binding

16

Symbols reference a value (def foo "hi")

(def bar (fn [n] (inc n)))foo & bar are symbols

They are bound to values

Expession Evaluated Result

foo "hi"

'foo foo

bar fn

(bar 12) 13

Binding & Shadowing

17

Before function x= 1
(def x 1)

(defn shadow
 [x]
 (println "Start function x=" x)
 (let [x 20]
 (println "In let x=" x))
 (println "After let x=" x))

(println "Before function x=" x)
(shadow 10)
(println "After function x=")

Start function x= 10

In let x= 20

After let x= 10

After function x= 1

Bindings, Shadowing & Functions

18

(dec 10)

(let [dec "December"
 test (dec 10)]
 test)

Compile Error

(dec 10)

(def dec "December")

(dec 10)

(clojure.core/dec 10)

Compile Error

(def + -)
(+ 4 3) 1

juxt

19

Combines a set of functions
Returns vector applying each function to input

(def basic-math (juxt + - * /))
(basic-math 2 5)

[7 -3 10 2/5]

(def split-collection (juxt take drop))
(split-collection 4 (range 9)) [(0 1 2 3) (4 5 6 7 8)]

juxt in Sorting

20

(sort-by (juxt :last :first) [{:last "Adams" :first "Zak"}
 {:last "Zen" :first "Alan"}
 {:last "Smith" :first "Alan"}])

({:last "Adams", :first "Zak"}
 {:last "Smith", :first "Alan"}
 {:last "Zen", :first "Alan"})

(sort-by (juxt :first :last) [{:last "Adams" :first "Zak"}
 {:last "Zen" :first "Alan"}
 {:last "Smith" :first "Alan"}])

({:last "Smith", :first "Alan"}
 {:last "Zen", :first "Alan"}
 {:last "Adams", :first "Zak"})

((juxt :last :first) {:last "Adams" :first "Zak"}) ["Adams" "Zak"]

comp

21

Takes a sequence of functions
Composes the functions

(def fourth (comp first rest rest rest))

(fourth [:a :b :c :d :e]) :d

((comp str +) 8 8 8) "24"

nth

22

Given n can we produce

(comp first rest rest rest … rest)

where we have n -1 rest's?

Yes We Can!

23

(defn fnth
 [n]
 (apply comp
 (cons first
 (take (dec n) (repeat rest)))))

((fnth 1) [:a :b :c :d :e])

((fnth 3) [:a :b :c :d :e])

:a

:c

How does this work?

24

(repeat rest) infinite lazy sequence of rest

(take (dec n) (repeat rest)) '(rest rest … rest) ;n-1 rest's

(cons first
 (take (dec n) (repeat rest))) '(first rest rest … rest)

(apply comp
 (cons first
 (take (dec n) (repeat rest))))

(comp first rest rest … rest)

memoize

25

(memoize f)

Caches results of function f
Uses cached value next time f is called with same arguments

(defn adder
 [x]
 (println "adder" x)
 (inc x))

(def adder-memoized (memoize adder))

(adder-memoized 1) prints 1, returns 2
(adder-memoized 1) returns 2
(adder-memoized 2) prints 2, returns 3
(adder-memoized 1) returns 2

memoize - Cache Size

26

Cache is a map

Contains return values for each different set of input arguments

clojure.core.cache contains more sophisticated caches

27

Multi-Methods

(defmulti even-odd even?)

(defmethod even-odd true
 [n]
 (str n " is even"))

(defmethod even-odd false
 [n]
 (str n " is odd"))

dispatch function

value of dispatch function
handled by this method

28

Multi-Methods

(defmulti even-odd even?)

(defmethod even-odd true
 [n]
 (str n " is even"))

(defmethod even-odd false
 [n]
 (str n " is odd"))

(even-odd 5) 5 is odd
(even-odd 4) 4 is even

Default values

29

(defmulti fibonacci identity)

(defmethod fibonacci 0
 [n]
 0)

(defmethod fibonacci 1
 [n]
 1)

(defmethod fibonacci :default
 [n]
 (+ (fibonacci (dec n)) (fibonacci (- n 2))))

(fibonacci 1) 1

(fibonacci 10) 55

Dispatch Function can be any function

30

(defmulti types class)

(defmethod types java.lang.String
 [x]
 "it is a string")

(defmethod types java.lang.Long
 [x]
 "it is a Long")

(defmethod types :default
 [x]
 "Don't know")

(types "ca") "it is a string"
(types 12) "it is a Long"
(types 12.3) "Don't know"

Multiple Arguments

31

(defmulti by-size (fn [a b] (size a)))

(defmethod by-size :small
 [x y]
 "small")

(defmethod by-size :small
 [x y]
 "small")

(defmethod by-size :medium
 [x y]
 "meduim")

(defmethod by-size :defualt
 [x y]
 "large & other")

(defn size
 [x]
 (cond
 (< x 5) :small
 (< x 20) :medium
 (< x 100) :large))

(by-size 2 20) "small"
(by-size 10 20) "meduim"

Vectors as Match

32

(defmulti by-size (fn [a b] [(size a) (size b)]))

(defmethod by-size [:small :small]
 [x y]
 "small-small")

(defmethod by-size [:small :large]
 [x y]
 "small-large")

(defmethod by-size [:medium :meduim]
 [x y]
 "meduim-medium")

(defmethod by-size :default
 [x y]
 "other")

(by-size 2 90) "small-large"
(by-size 10 20) "other"

Warning about defmulti

33

defmulti is define once

If you need to modify your defmulti need to remove it from the bindings

(ns-unmap *ns* 'by-size)

In previous example used

One Last Example

34

(defmulti by-children (fn [[a c b]] [(nil? b) (nil? c)]))

(defmethod by-children [true true]
 [x]
 "no children")

(defmethod by-children [true false]
 [x]
 "right child")

(defmethod by-children [false true]
 [x]
 "left children")

(defmethod by-children [false false]
 [x]
 "both children")

(by-children [1 4 nil]) "right child"
(by-children [1 nil nil]) "no children"

Open-Closed Principle

35

"software entities (classes, modules, functions, etc.) should be open for extension,
but closed for modification"

Wikipedia

Delay

36

Suspends execution of code until delay is dereferenced

Caches result

Second time dereferenced returns cached result

Thread safe

(def wait (delay (println "do it now") (+ 1 2)))

@wait prints "do it now", returns 3
@wait returns 3

realized?

37

(def wait (delay (println "do it now") (+ 1 2)))

(realized? wait) false
@wait prints "do it now", returns 3
(realized? wait) true
@wait returns 3

Returns true if a value has been produced for a promise, delay, future or lazy
sequence.

Example - Proxy for Expensive Operation

38

(defn fetch-page
 [url]
 {:url url
 :contents (delay (slurp url))})

(def result (fetch-page "http://www.eli.sdsu.edu/index.html"))

(:contents result) #<Delay@2fcc470c: :pending>

(realized? (:contents result)) false

@(:contents result) "<!DOCTYPE html>\n<html lang=\"en\">\n …"

@ and deref

39

@(:contents result)

(deref (:contents result))

They do the same thing

Future

40

(def long-calculation (future (apply + (range 1e8))))
@long-calculation

Computes body on another thread

Use @ or deref to get answer

@, deref blocks until computation is done

Future & Delay in ending program

41

(def long-calculation (future (apply + (range 1e8))))

@long-calculation

(shutdown-agents)

When you end your program there will be a 1 minute delay if you used future

End your program with (shutdown-agents)

deref with Timeout

42

(deref (future (Thread/sleep 5000) :done!)
 1000
 :impatient!)
 ;= :impatient!

Promise

43

one-time, single value pipe

(def p (promise))
(realized? p) false
(deliver p 42) #<core$promise$reify__1707@3f0ba812: 42>
(realized? p) true
@p 42
(deliver p 50) nil
@p 42

Promise

44

Simple way to send data back from thread

45

References

Time, State, Identity

46

Time
Relative moments when an event occurs

State
Snapshot of entity’s properties at a moment in time

Identity
Logical entity identified by a common stream of states occurring over time

State & Identity

47

{:name “Sarah”
 :age 10
 :wears-glasses false}

{:name “Sarah”
 :age 11
 :wears-glasses false}

{:name “Sarah”
 :age 12
 :wears-glasses true}

(def sarah

Different things in Clojure

Java

48

 class Person {
 public String name;
 public int age;
 public boolean wearsGlasses;

 public Person (String name, int age, boolean wearsGlasses) {
 this.name = name;
 this.age = age;
 this.wearsGlasses = wearsGlasses;

}
}

State & Identity

49

Person sarah

Sarah
10
false

Sarah
11
false

Sarah
12
true

Complexted in Java

Reference Type Basics

50

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

All are pointers

Can change pointer to point to different data

Dereferencing will never block

Each type as different way of setting/changing its value

var, ref, atom, agent

Reference Type Basics

51

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

var, ref, atom, agent

Each type

Can have meta data

Can have watches (observers)
Call specified function when value is change

Can have validator
Enforce constraints on values pointer can point to

Features of each Type

52

Ref Agent Atom Var

Coordinated X

Asynchronous X

Retriable X X

Thread-local X

Synchronous - block until operation completes

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

In addition to all being dereferenceable, all reference types:

May be decorated with metadata (see Metadata). Rather than using with-meta or vary-meta, metadata on
reference types may only be changed with alter-meta!, which modifies a reference’s metadata in-place.[133]

Can notify functions you specify when the their state changes; these functions are called watches, which we
discuss in Watches.

Can enforce constraints on the state they hold, potentially aborting change operations, using validator functions
(see Validators).

Classifying Concurrent Operations
In thinking about Clojure’s reference types, we’ll repeatedly stumble across a couple of key concepts that can be
used to characterize concurrent operations. Taken together, they can help us think clearly about how each type is
best used.

Coordination. A coordinated operation is one where multiple actors must cooperate (or, at a minimum, be properly
sequestered so as to not interfere with each other) in order to yield correct results. A classic example is any banking
transaction: a process that aims to transfer monies from one account to another must ensure that the credited account
not reflect an increased balance prior to the debited account reflecting a decreased balance, and that the transaction
fail entirely if the latter has insufficient funds. Along the way, many other processes may provoke similar
transactions involving the same accounts. Absent methods to coordinate the changes, some accounts could reflect
incorrect balances for some periods, and transactions that should have failed (or should have succeeded) would
succeed (or fail) improperly.

In contrast, an uncoordinated operation is one where multiple actors cannot impact each other negatively because
their contexts are separated. For example, two different threads of execution can safely write to two different files
on disk with no possibility of interfering with each other.

Synchronization. Synchronous operations are those where the caller’s thread of execution waits or blocks or sleeps
until it may have exclusive access to a given context, whereas asynchronous operations are those that can be started
or scheduled without blocking the initiating thread of execution.

Just these two concepts (or, four, if you count their duals) are sufficient to fully characterize many (if not most)
concurrent operations you might encounter. Given that, it makes sense that Clojure’s reference types were designed
to implement the semantics necessary to address permutations of these concepts, and that they can be conveniently
classified according to the types of operations for which each is suited:[134]

When choosing which reference type(s) to use for a given problem, keep this classification in mind; if you can
characterize a particular problem using it, then the most appropriate reference type will be obvious.

Creating & Referencing Each Type

53

(def ref-example (ref 10))
@ref-example
(deref ref-example)

(def agent-example (agent 10))
@agent-example
(deref agent-example)

(def atom-example (atom 10))
@atom-example
(deref atom-example)

(def var-example 10)
var-example Note the difference

Watches

54

(defn cat-watch
 [key pointer old new]
 (println "Watcher" key pointer old new))

(def cat 4)

(add-watch (var cat) :cat cat-watch)

(def cat 10)

(remove-watch (var cat) :cat)

(def cat 20)

Output in Console

Watcher :cat #'user/cat 4 10

Validator

55

(def cat 4)

(set-validator! (var cat) #(> 10 %))

(def cat 9)

(def cat 20) ;;exception

Features of each Type

56

Ref Agent Atom Var

Coordinated X

Asynchronous X

Retriable X X

Thread-local X

Synchronous - block until operation completes

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

In addition to all being dereferenceable, all reference types:

May be decorated with metadata (see Metadata). Rather than using with-meta or vary-meta, metadata on
reference types may only be changed with alter-meta!, which modifies a reference’s metadata in-place.[133]

Can notify functions you specify when the their state changes; these functions are called watches, which we
discuss in Watches.

Can enforce constraints on the state they hold, potentially aborting change operations, using validator functions
(see Validators).

Classifying Concurrent Operations
In thinking about Clojure’s reference types, we’ll repeatedly stumble across a couple of key concepts that can be
used to characterize concurrent operations. Taken together, they can help us think clearly about how each type is
best used.

Coordination. A coordinated operation is one where multiple actors must cooperate (or, at a minimum, be properly
sequestered so as to not interfere with each other) in order to yield correct results. A classic example is any banking
transaction: a process that aims to transfer monies from one account to another must ensure that the credited account
not reflect an increased balance prior to the debited account reflecting a decreased balance, and that the transaction
fail entirely if the latter has insufficient funds. Along the way, many other processes may provoke similar
transactions involving the same accounts. Absent methods to coordinate the changes, some accounts could reflect
incorrect balances for some periods, and transactions that should have failed (or should have succeeded) would
succeed (or fail) improperly.

In contrast, an uncoordinated operation is one where multiple actors cannot impact each other negatively because
their contexts are separated. For example, two different threads of execution can safely write to two different files
on disk with no possibility of interfering with each other.

Synchronization. Synchronous operations are those where the caller’s thread of execution waits or blocks or sleeps
until it may have exclusive access to a given context, whereas asynchronous operations are those that can be started
or scheduled without blocking the initiating thread of execution.

Just these two concepts (or, four, if you count their duals) are sufficient to fully characterize many (if not most)
concurrent operations you might encounter. Given that, it makes sense that Clojure’s reference types were designed
to implement the semantics necessary to address permutations of these concepts, and that they can be conveniently
classified according to the types of operations for which each is suited:[134]

When choosing which reference type(s) to use for a given problem, keep this classification in mind; if you can
characterize a particular problem using it, then the most appropriate reference type will be obvious.

Atoms

57

Changes are
Synchronous
Uncoordinated
Atomic

Synchronous
Code waits until change done

Uncoordinated
No transaction support

Atomic
Threads only see old or new value
Never see partially changed data

Atoms - Methods for change

58

swap!
Applies function to current state for new state

reset!
Changes state to given value

compare-and-set!
Changes state to given value only if current value is what you think it is

reset!

59

(def a (atom 0))

@a 0

(reset! a 5) 5

@a 5

swap!

60

(def a (atom 0))

@a 0

(swap! a inc) 1

@a 1

swap!

61

(def sarah (atom {:name "Sarah" :age 10 :wears-glasses? false}))

(swap! sarah update-in [:age] + 3) {:name "Sarah", :age 13,
 :wears-glasses? false}

@sarah {:name "Sarah", :age 13,
 :wears-glasses? false}

swap! is Atomic

62

(swap! sarah (comp #(update-in % [:age] inc)
 #(assoc % :wears-glasses? true)))

Compound operation on sarah

What happens if other thread reads sarah during swap!

It gets the old value

swap! is Atomic

63

(swap! sarah (comp #(update-in % [:age] inc)
 #(assoc % :wears-glasses? true)))

What happens if other thread modifies sarah during swap!

It retries until it can read the new value

Then modifies sarah

64

Figure 4-1. Interaction of conflicting swap! operations on a shared atom

If the value of atom a changes between the time when function g is invoked and the time when it returns a new
value for a (a1 and a2, respectively), swap! will discard that new value and reevaluate the call with the latest
available state of a. This will continue until the return value of g can be set on a as the immediate successor of the
state of a with which it was invoked.

There is no way to constrain swap!’s retry semantics; given this, the function you provide to swap! must be pure, or
things will surely go awry in hard-to-predict ways.

Being a synchronous reference type, functions that change atom values do not return until they have completed:

(def x (atom 2000))
;= #'user/x
(swap! x #(Thread/sleep %)) ;= nil

This expression takes at least two seconds to return.

A “bare” compare-and-set! operation is also provided for use with atoms, if you already think you know what the
value of the atom being modified is; it returns true only if the atom’s value was changed:

(compare-and-set! xs :wrong "new value")
;= false
(compare-and-set! xs @xs "new value")
;= true
@xs
;= "new value"

