CS 420 Advanced Programming Languages
Fall Semester, 2022

Doc 17 Some Concurrency
Oct 27, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Basic Terms

Asynchronous
Promise, future, delay

State management, particularly in the face of concurrency

ref, var, watchers, validators
Transactions

Communicating Sequential Processes
agents, core.async

Sample Motivation

(slurp "http://www.eli.sdsu.edu/") Returns the page at the url

(let [page (slurp "http://www.eli.sdsu.edu/")] What happens if network is slow?
(display-page-in-GUI page))

Simple Way to Use threads - future

(future expression)
Runs expression in a separate thread

deref & @ do the same thing
Blocks until thread is done
Returns result of thread
Caches the result

Simple Way to Use threads - future

(let [result (future (printin "this prints once")
(+1 1)
(println "this prints first")
(printin "this prints third")
(printin "deref: " (deref result))
(printin "deref: " (deref result))

(printin "@: " @result))

future
Runs in a separate thread

deref & @ do the same thing
Blocks until thread is done
Returns result of thread
Caches the result

this prints first
this prints once
this prints third
deref. 2

deref. 2

@: 2

(def web-site-urls
["http://www.eli.sdsu.edu/"
"http://www.google.com/"
"http://www.yahoo.com/"
"http://www.bing.com/"
"http://www.wikipedia.org/"])

(def web-sites-futures (map #(future (slurp %)) web-site-urls))

(def pages (map deref web-sites))

Delay

Suspends execution of code until delay is dereferenced
Caches result
Second time dereferenced returns cached result

Thread safe

(def wait (delay (printin "do it now") (+ 1 2)))

@wait prints "do it now", returns 3
@wait returns 3

realized?

Returns true if a value has been produced for a promise, delay, future or lazy
sequence.

(def wait (delay (printin "do it now") (+ 1 2)))

(realized? wait) false

@wait prints "do it now", returns 3
(realized? wait) true
@wait returns 3

Example - Notify User of Uploads Once

(def gimli-headshots ["serious.jpg" "fun.jpg" "playful.jpg"])

(defn email-user
[email-address]
(printin "Sending headshot notification to" email-address))

(defn upload-document
"Needs to be implemented"”
[headshot]
true)

(let [notify (delay (email-user "and-my-axe@gmail.com"))]
(doseq [headshot gimli-headshots]
(future (upload-document headshot)
(force notify))))

Example - Proxy for Expensive Operation

(defn fetch-page
[url]
{:url url
:contents (delay (slurp url))})

(def result (fetch-page "http://www.eli.sdsu.edu/index.html"))

(:contents result) #<Delay@?2fcc470c: :pending>
(realized? (.contents result)) false
@(:contents result) "<IDOCTYPE html>\n<html lang=\"en\">\n ..."

|0

deref with Timeout

(deref (future (Thread/sleep 5000) :done!)
1000
.impatient!)
;= .impatient!

Promise

one-time, single value pipe

(def p (promise))

(realized? p) false

(deliver p 42) #<core$promisedreify 1707@3f0ba812: 42>
(realized? p) true

@p 42

(deliver p 50) nil

@p 42

12

Promise

Simple way to send data back from thread

13

(def web-site-urls
Find a Web Page with a Term ["http://www.eli.sdsu.edu/"
"https://www.google.com/"
"https://www.yahoo.com/"
"https://www.bing.com/"
"https://www.wikipedia.org/"])

(defn find-page-with-term
[urls term]
(let [page-with-term (promise)
search-page #(future (let [page (slurp %)]
(when (clojure.string/includes? page term)
(deliver page-with-term %))))]
(mapv search-page urls)
page-with-term))

(let [page (find-page-with-term web-site-urls "Web")] false
(printin (realized? page)))

14

(def web-site-urls
["http://www.eli.sdsu.edu/"
"https://www.google.com/"
"https://www.yahoo.com/"
"https://www.bing.com/"
"https://www.wikipedia.org/"])

|5

References

Time, State, Identity

Time
Relative moments when an event occurs

State
Snapshot of entity’s properties at a moment in time

|dentity
Logical entity identified by a common stream of states occurring over time

|7

State & Identity

{:name “Sarah” {:name “Sarah” {:name “Sarah”
:age 10 :age 11 age 12
‘wears-glasses false} ‘wears-glasses false} ‘wears-glasses true}
A
(def sarah

18

Java

class Person {
public String name;
public int age;
public boolean wearsGlasses;

public Person (String name, int age, boolean wearsGlasses) {
this.name = name;
this.age = age;
this.wearsGlasses = wearsGlasses;

}

19

State & Identity

Sarah
10
falee

Person sarah

20

Complexted in Java

Reference Type Basics e

deref

var, ref, atom, agent

| value

Reference type

All are pointers

Can change pointer to point to different data

Dereferencing will never block

Each type as different way of setting/changing its value

21

Reference Type Basics o

deref

var, ref, atom, agent

| value I

Each type Reference type

Can have meta data

Can have watches (observers)
Call specified function when value is change

Can have validator
Enforce constraints on values pointer can point to

22

Features of each Type

Ref Agent Atom Var

Coordinated X
Asynchronous X
Retriable X X
Thread-local X

Synchronous - block until operation completes

asynchronous synchronous

coordinated

uncoordinated

Refs

Atoms

Agents

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

23

Creating & Referencing Each Type

(def ref-example (ref 10))
@ref-example
(deref ref-example)

(def agent-example (agent 10))
@agent-example
(deref agent-example)

(def atom-example (atom 10))
@atom-example
(deref atom-example)

(def var-example 10)

var-example Note the difference

24

Watches

(defn cat-watch Output in Console
[key pointer old new]
(printin "Watcher" key pointer old new)) Watcher :cat #'user/ce

(
(add-watch (var cat) :cat cat-watch)
(def cat 10)

(remove-watch (var cat) :cat)

(

def cat 20)

25

Validator

(def cat 4)
(set-validator! (var cat) #(> 10 %))
(def cat 9)

(def cat 20) ;;exception

26

Features of each Type

Ref Agent Atom Var

Coordinated X
Asynchronous X
Retriable X X
Thread-local X

Synchronous - block until operation completes

asynchronous synchronous

coordinated

uncoordinated

Refs

Atoms

Agents

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

27

Atoms

Changes are
Synchronous
Uncoordinated
Atomic

28

Synchronous
Code waits until change done

Uncoordinated
No transaction support

Atomic
Threads only see old or new value
Never see partially changed data

Atoms - Methods for change

swap!
Applies function to current state for new state

reset!
Changes state to given value

compare-and-set!
Changes state to given value only if current value is what you think it is

29

reset!

(def a (atom 0))

@a

(reset! a 5)

@a

30

swap!
(def a (atom 0))

@a

(swap! a inc)

@a

31

swap!

(def sarah (atom {:name "Sarah" :age 10 :wears-glasses? false}))

(swap! sarah update-in [:age] + 3) {:name "Sarah", :age 13,
‘wears-glasses? false}

@sarah {:name "Sarah", :age 13,
‘wears-glasses? false}

32

swap! is Atomic

(swap! sarah (comp #(update-in % [:age] inc)
#(assoc % :wears-glasses? true)))

Compound operation on sarah

What happens if other thread reads sarah during swap!

It gets the old value

33

swap! is Atomic

(swap! sarah (comp #(update-in % [:age] inc)
#(assoc % :wears-glasses? true)))

What happens if other thread modifies sarah during swap!

It retries until it can read the new value

Then modifies sarah

34

(swap! a g ..)

Time

35

Recall - find-page-with-term

(defn find-page-with-term
[urls term]
(let [page-with-term (promise)
search-page #(future (let [page (slurp %)]
(when (clojure.string/includes? page term)
(deliver page-with-term %))))]
(mapv search-page urls)
page-with-term))

36

Finding all pages containing a Term

Write to a vector when find a page with a term

Need to make sure that only one thread writes at a time
Need a mutex

(defn find-page-with-term
[urls term]
(let [pages-with-term (atom [])
search-page #(future (let [url %
page (slurp ulr)]
(when (clojure.string/includes? page term)
(swap! pages-with-term conj url))))]
(mapv search-page urls)
pages-with-term))

37

Ref

Coordinated reference type
Multiple values can be changed
Changes are atomic

No Race conditions

No deadlocks

No manual locks, monitors etc

38

Software Transactional Memory

Ref changes are done in a transaction

No changes are visible out side transaction until transaction is completed
Exceptions abort the transaction

If

Transaction A and B modify one or more of the same refs

Transaction A starts before B, but ends between B’s start and end
Then

Transaction B will retry with the new values of the refs

39

Starting a Transaction

(dosync form1 form2 ... formN)

40

Altering a ref

(alter ref fun & args)

Applys the fun to the ref to get new value

(ref-set ref val)

Sets the ref to val

4]

Example

(def sam-account (ref 10))
(def pete-account (ref 20))

(set-validator! sam-account #(< 0 %))
(set-validator! pete-account #(< 0 %))

(defn sam-pay-pete
[amount]
(dosync
(alter pete-account + amount)
(alter sam-account - amount)))

42

(sam-pay-pete 8)
@sam-account
@pete-account
(sam-pay-pete 8)
@sam-account

@pete-account

2

28
Exception
2

28

