
CS 420 Advanced Programming Languages�
Fall Semester, 2022�

Doc 17 Some Concurrency�
Oct 27, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Basic Terms

2

Asynchronous

Promise, future, delay

State management, particularly in the face of concurrency

ref, var, watchers, validators

Transactions

Communicating Sequential Processes

agents, core.async

Sample Motivation

3

(slurp "http://www.eli.sdsu.edu/") Returns the page at the url

(let [page (slurp "http://www.eli.sdsu.edu/")]

(display-page-in-GUI page))

What happens if network is slow?

Simple Way to Use threads - future

4

(future expression)

Runs expression in a separate thread

deref & @ do the same thing

Blocks until thread is done

Returns result of thread

Caches the result

Simple Way to Use threads - future

5

(let [result (future (println "this prints once")

 (+ 1 1))]

 (println "this prints first")

 (println "this prints third")

 (println "deref: " (deref result))

 (println "deref: " (deref result))

 (println "@: " @result))

this prints first

this prints once

this prints third

deref: 2

deref: 2

@: 2

future

Runs in a separate thread

deref & @ do the same thing

Blocks until thread is done

Returns result of thread

Caches the result

6

(def web-site-urls

 ["http://www.eli.sdsu.edu/"

 "http://www.google.com/"

 "http://www.yahoo.com/"

 "http://www.bing.com/"

 "http://www.wikipedia.org/"])

(def web-sites-futures (map #(future (slurp %)) web-site-urls))

(def pages (map deref web-sites))

Delay

7

Suspends execution of code until delay is dereferenced

Caches result

Second time dereferenced returns cached result

Thread safe

(def wait (delay (println "do it now") (+ 1 2)))

@wait		 	 prints "do it now", returns 3

@wait		 	 returns 3

realized?

8

(def wait (delay (println "do it now") (+ 1 2)))

(realized? wait)	 false

@wait		 	 	 prints "do it now", returns 3

(realized? wait)	 true

@wait		 	 	 returns 3

Returns true if a value has been produced for a promise, delay, future or lazy
sequence.

Example - Notify User of Uploads Once

9

(def gimli-headshots ["serious.jpg" "fun.jpg" "playful.jpg"])

(defn email-user

 [email-address]

 (println "Sending headshot notification to" email-address))

(defn upload-document

 "Needs to be implemented"

 [headshot]

 true)

(let [notify (delay (email-user "and-my-axe@gmail.com"))]

 (doseq [headshot gimli-headshots]

 (future (upload-document headshot)

 (force notify))))

Example - Proxy for Expensive Operation

10

(defn fetch-page

 [url]

 {:url url

 :contents (delay (slurp url))})

(def result (fetch-page "http://www.eli.sdsu.edu/index.html"))

(:contents result)		 	 	 	 	 #<Delay@2fcc470c: :pending>

(realized? (:contents result))	 	 	 false

@(:contents result)	 	 	 	 	 "<!DOCTYPE html>\n<html lang=\"en\">\n …"

deref with Timeout

11

(deref (future (Thread/sleep 5000) :done!)

 1000

 :impatient!)

 ;= :impatient!

Promise

12

one-time, single value pipe

(def p (promise))

(realized? p)		 	 	 false

(deliver p 42)	 	 	 #<core$promise$reify__1707@3f0ba812: 42>

(realized? p)		 	 	 true

@p		 	 	 	 	 	 42

(deliver p 50)	 	 	 nil

@p 	 	 	 	 	 	 42

Promise

13

Simple way to send data back from thread

Find a Web Page with a Term

14

(defn find-page-with-term

 [urls term]

 (let [page-with-term (promise)

 search-page #(future (let [page (slurp %)]

 (when (clojure.string/includes? page term)

 (deliver page-with-term %))))]

 (mapv search-page urls)

 page-with-term))

(def web-site-urls

 ["http://www.eli.sdsu.edu/"

 "https://www.google.com/"

 "https://www.yahoo.com/"

 "https://www.bing.com/"

 "https://www.wikipedia.org/"])

(let [page (find-page-with-term web-site-urls "Web")]

 (println (realized? page)))

false

15

(def web-site-urls

 ["http://www.eli.sdsu.edu/"

 "https://www.google.com/"

 "https://www.yahoo.com/"

 "https://www.bing.com/"

 "https://www.wikipedia.org/"])

16

References

Time, State, Identity

17

Time

Relative moments when an event occurs

State

Snapshot of entity’s properties at a moment in time

Identity

Logical entity identified by a common stream of states occurring over time

State & Identity

18

{:name “Sarah”

 :age 10

 :wears-glasses false}

{:name “Sarah”

 :age 11

 :wears-glasses false}

{:name “Sarah”

 :age 12

 :wears-glasses true}

(def sarah

Different things in Clojure

Java

19

 class Person {

 public String name;

 public int age;

 public boolean wearsGlasses;

 public Person (String name, int age, boolean wearsGlasses) {

 this.name = name;

 this.age = age;

 this.wearsGlasses = wearsGlasses;

}

}

State & Identity

20

Person sarah

Sarah

10

false

Sarah

11

false

Sarah

12

true

Complexted in Java

Reference Type Basics

21

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

All are pointers

Can change pointer to point to different data

Dereferencing will never block

Each type as different way of setting/changing its value

var, ref, atom, agent

Reference Type Basics

22

reference types and their semantics make it possible to design concurrent programs that take maximum advantage of
the increasingly capable hardware we have available to us, while eliminating entire categories of bugs and failure
conditions that would otherwise go with the territory of dealing with bare threads and locks.

Clojure Reference Types
Identities are represented in Clojure using four reference types: vars, refs, agents, and atoms. All of these are very
different in certain ways, but let’s first talk about what they have in common.

At their most fundamental level, references are just boxes that hold a value, where that value can be changed by
certain functions (different for each reference type):

All references always contain some value (even if that value is nil); accessing one is always done using deref or @:

@(atom 12)
;= 12
@(agent {:c 42})
;= {:c 42}
(map deref [(agent {:c 42}) (atom 12) (ref "http://clojure.org") (var +)])
;= ({:c 42} 12 "http://clojure.org" #<core$_PLUS_ clojure.core$_PLUS_@65297549>)

Dereferencing will return a snapshot of the state of a reference when deref was invoked. This doesn’t mean there’s
copying of any sort when you obtain a snapshot, simply that the returned state—assuming you’re using immutable
values for reference state, like Clojure’s collections—is inviolate, but that the reference’s state at later points in time
may be different.

One critical guarantee of deref within the context of Clojure’s reference types is that deref will never block,
regardless of the change semantics of the reference type being dereferenced or the operations being applied to it in
other threads of execution. Similarly, dereferencing a reference type will never interfere with other operations. This
is in contrast with delays, promises, and futures—which can block on deref if their value is not yet realized—and
most concurrency primitives in other languages, where readers are often blocked by writers and vice versa.

“Setting” the value of a reference type is a more nuanced affair. Each reference type has its own semantics for
managing change, and each type has its own family of functions for applying changes according to those semantics.
Talking about those semantics and their corresponding functions will form the bulk of the rest of our discussion.

var, ref, atom, agent

Each type

Can have meta data

Can have watches (observers)

Call specified function when value is change

Can have validator

Enforce constraints on values pointer can point to

Features of each Type

23

Ref Agent Atom Var

Coordinated X

Asynchronous X

Retriable X X

Thread-local X

Synchronous - block until operation completes

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

In addition to all being dereferenceable, all reference types:

May be decorated with metadata (see Metadata). Rather than using with-meta or vary-meta, metadata on
reference types may only be changed with alter-meta!, which modifies a reference’s metadata in-place.[133]

Can notify functions you specify when the their state changes; these functions are called watches, which we
discuss in Watches.

Can enforce constraints on the state they hold, potentially aborting change operations, using validator functions
(see Validators).

Classifying Concurrent Operations
In thinking about Clojure’s reference types, we’ll repeatedly stumble across a couple of key concepts that can be
used to characterize concurrent operations. Taken together, they can help us think clearly about how each type is
best used.

Coordination. A coordinated operation is one where multiple actors must cooperate (or, at a minimum, be properly
sequestered so as to not interfere with each other) in order to yield correct results. A classic example is any banking
transaction: a process that aims to transfer monies from one account to another must ensure that the credited account
not reflect an increased balance prior to the debited account reflecting a decreased balance, and that the transaction
fail entirely if the latter has insufficient funds. Along the way, many other processes may provoke similar
transactions involving the same accounts. Absent methods to coordinate the changes, some accounts could reflect
incorrect balances for some periods, and transactions that should have failed (or should have succeeded) would
succeed (or fail) improperly.

In contrast, an uncoordinated operation is one where multiple actors cannot impact each other negatively because
their contexts are separated. For example, two different threads of execution can safely write to two different files
on disk with no possibility of interfering with each other.

Synchronization. Synchronous operations are those where the caller’s thread of execution waits or blocks or sleeps
until it may have exclusive access to a given context, whereas asynchronous operations are those that can be started
or scheduled without blocking the initiating thread of execution.

Just these two concepts (or, four, if you count their duals) are sufficient to fully characterize many (if not most)
concurrent operations you might encounter. Given that, it makes sense that Clojure’s reference types were designed
to implement the semantics necessary to address permutations of these concepts, and that they can be conveniently
classified according to the types of operations for which each is suited:[134]

When choosing which reference type(s) to use for a given problem, keep this classification in mind; if you can
characterize a particular problem using it, then the most appropriate reference type will be obvious.

Creating & Referencing Each Type

24

(def ref-example (ref 10))

@ref-example

(deref ref-example)

(def agent-example (agent 10))

@agent-example

(deref agent-example)

(def atom-example (atom 10))

@atom-example

(deref atom-example)

(def var-example 10)

var-example Note the difference

Watches

25

(defn cat-watch

 [key pointer old new]

 (println "Watcher" key pointer old new))

(def cat 4)

(add-watch (var cat) :cat cat-watch)

(def cat 10)

(remove-watch (var cat) :cat)

(def cat 20)

Output in Console

Watcher :cat #'user/cat 4 10

Validator

26

(def cat 4)

(set-validator! (var cat) #(> 10 %))

(def cat 9)

(def cat 20)	 	 	 	 	 ;;exception

Features of each Type

27

Ref Agent Atom Var

Coordinated X

Asynchronous X

Retriable X X

Thread-local X

Synchronous - block until operation completes

Asynchronous - Non blocking, operation can compete on separate thread

Coordinated - Supports transactions

Thread-local - Changes made are local to current thread

In addition to all being dereferenceable, all reference types:

May be decorated with metadata (see Metadata). Rather than using with-meta or vary-meta, metadata on
reference types may only be changed with alter-meta!, which modifies a reference’s metadata in-place.[133]

Can notify functions you specify when the their state changes; these functions are called watches, which we
discuss in Watches.

Can enforce constraints on the state they hold, potentially aborting change operations, using validator functions
(see Validators).

Classifying Concurrent Operations
In thinking about Clojure’s reference types, we’ll repeatedly stumble across a couple of key concepts that can be
used to characterize concurrent operations. Taken together, they can help us think clearly about how each type is
best used.

Coordination. A coordinated operation is one where multiple actors must cooperate (or, at a minimum, be properly
sequestered so as to not interfere with each other) in order to yield correct results. A classic example is any banking
transaction: a process that aims to transfer monies from one account to another must ensure that the credited account
not reflect an increased balance prior to the debited account reflecting a decreased balance, and that the transaction
fail entirely if the latter has insufficient funds. Along the way, many other processes may provoke similar
transactions involving the same accounts. Absent methods to coordinate the changes, some accounts could reflect
incorrect balances for some periods, and transactions that should have failed (or should have succeeded) would
succeed (or fail) improperly.

In contrast, an uncoordinated operation is one where multiple actors cannot impact each other negatively because
their contexts are separated. For example, two different threads of execution can safely write to two different files
on disk with no possibility of interfering with each other.

Synchronization. Synchronous operations are those where the caller’s thread of execution waits or blocks or sleeps
until it may have exclusive access to a given context, whereas asynchronous operations are those that can be started
or scheduled without blocking the initiating thread of execution.

Just these two concepts (or, four, if you count their duals) are sufficient to fully characterize many (if not most)
concurrent operations you might encounter. Given that, it makes sense that Clojure’s reference types were designed
to implement the semantics necessary to address permutations of these concepts, and that they can be conveniently
classified according to the types of operations for which each is suited:[134]

When choosing which reference type(s) to use for a given problem, keep this classification in mind; if you can
characterize a particular problem using it, then the most appropriate reference type will be obvious.

Atoms

28

Changes are

Synchronous

Uncoordinated

Atomic

Synchronous

Code waits until change done

Uncoordinated

No transaction support

Atomic

Threads only see old or new value

Never see partially changed data

Atoms - Methods for change

29

swap!

Applies function to current state for new state

reset!

Changes state to given value

compare-and-set!

Changes state to given value only if current value is what you think it is

reset!

30

(def a (atom 0))

@a		 	 	 	 	 0

(reset! a 5)	 	 	 5

@a		 	 	 	 	 5

swap!

31

(def a (atom 0))

@a		 	 	 	 	 0

(swap! a inc)		 	 1

@a		 	 	 	 	 1

swap!

32

(def sarah (atom {:name "Sarah" :age 10 :wears-glasses? false}))

(swap! sarah update-in [:age] + 3)		 	 {:name "Sarah", :age 13,

	 	 	 	 	 	 	 	 	 	 	 	 :wears-glasses? false}

@sarah	 	 	 	 	 	 	 	 	 {:name "Sarah", :age 13,

	 	 	 	 	 	 	 	 	 	 	 	 :wears-glasses? false}

swap! is Atomic

33

(swap! sarah (comp #(update-in % [:age] inc)

 #(assoc % :wears-glasses? true)))

Compound operation on sarah

What happens if other thread reads sarah during swap!

It gets the old value

swap! is Atomic

34

(swap! sarah (comp #(update-in % [:age] inc)

 #(assoc % :wears-glasses? true)))

What happens if other thread modifies sarah during swap!

It retries until it can read the new value

Then modifies sarah

35

Figure 4-1. Interaction of conflicting swap! operations on a shared atom

If the value of atom a changes between the time when function g is invoked and the time when it returns a new
value for a (a1 and a2, respectively), swap! will discard that new value and reevaluate the call with the latest
available state of a. This will continue until the return value of g can be set on a as the immediate successor of the
state of a with which it was invoked.

There is no way to constrain swap!’s retry semantics; given this, the function you provide to swap! must be pure, or
things will surely go awry in hard-to-predict ways.

Being a synchronous reference type, functions that change atom values do not return until they have completed:

(def x (atom 2000))
;= #'user/x
(swap! x #(Thread/sleep %)) ;= nil

This expression takes at least two seconds to return.

A “bare” compare-and-set! operation is also provided for use with atoms, if you already think you know what the
value of the atom being modified is; it returns true only if the atom’s value was changed:

(compare-and-set! xs :wrong "new value")
;= false
(compare-and-set! xs @xs "new value")
;= true
@xs
;= "new value"

Recall - find-page-with-term

36

(defn find-page-with-term

 [urls term]

 (let [page-with-term (promise)

 search-page #(future (let [page (slurp %)]

 (when (clojure.string/includes? page term)

 (deliver page-with-term %))))]

 (mapv search-page urls)

 page-with-term))

Finding all pages containing a Term

37

(defn find-page-with-term

 [urls term]

 (let [pages-with-term (atom [])

 search-page #(future (let [url %

 page (slurp ulr)]

 (when (clojure.string/includes? page term)

 (swap! pages-with-term conj url))))]

 (mapv search-page urls)

 pages-with-term))

Write to a vector when find a page with a term

Need to make sure that only one thread writes at a time

Need a mutex

Ref

38

Coordinated reference type

Multiple values can be changed

Changes are atomic

No Race conditions

No deadlocks

No manual locks, monitors etc

Software Transactional Memory

39

Ref changes are done in a transaction

No changes are visible out side transaction until transaction is completed

Exceptions abort the transaction

If

Transaction A and B modify one or more of the same refs

Transaction A starts before B, but ends between B’s start and end

Then

Transaction B will retry with the new values of the refs

Starting a Transaction

40

(dosync form1 form2 ... formN)

Altering a ref

41

(alter ref fun & args)

Applys the fun to the ref to get new value

(ref-set ref val)

Sets the ref to val

Example

42

(def sam-account (ref 10))

(def pete-account (ref 20))

(set-validator! sam-account #(< 0 %))

(set-validator! pete-account #(< 0 %))

(defn sam-pay-pete

 [amount]

 (dosync

 (alter pete-account + amount)

 (alter sam-account - amount)))

(sam-pay-pete 8)

@sam-account	 	 	 2

@pete-account	 	 	 28

(sam-pay-pete 8)		 	 Exception

@sam-account	 	 	 2	

@pete-account	 	 	 28

