
CS 420 Advanced Programming Languages
Fall Semester, 2022

Doc 18 Actor
Nov 1, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Big Idea

2

Don't have one big program with a tangle of threads!

Have separate objects (actors) - mini-programs
Each actor runs sequentially
An actor receives "requests" on a queue or channel
An actor can send results and requests to another actor via a queue or channel
Each actor runs in a separate thread

3

Communicating Sequential Processes - CSP

1978 - C. A. R. Hoare first described

Mathematical theory of concurrency

Message passing & Channels

Used to specify & verify Concurrent systems

T9000 Transputer

Influenced design of programming languages

Occam

Go

Agents & Core.Async

4

Clojure implementations of the Actor idea

Agent
Data
Functions are sent to the data
Data lives in is own thread, function evaluated in that thread

Core.Async
Actor is code
Each actor is in its own thread
Data is sent to an actor

Channel

5

Communication link between producers and consumers

Channels can be
Unbuffered
Buffered

Types of Buffers

6

buffer
blocks/parks when full

dropping-buffer
While full drops items that are added

sliding-buffer
While full drops oldest item when new item added

Producing a Channel

7

(chan)
(chan buf-or-n)

(chan 5) channel with buffer of size 5

(chan (buffer 3)) channel with buffer of size 3

(chan (dropping-buffer 6))

(chan (slidding-buffer 2))

Reading/Writing Channels

8

(>!! channel value)
Writes value to channel
Blocks if buffer is full (unless buffer is sliding or drop)

(<!! channel)
Reads a value from channel
Blocks if nothing is available
Returns nil if channel is closed

Example

9

(def test-channel (async/chan 2))

(async/>!! test-channel "hello there")

(async/<!! test-channel)

Running in other Threads

10

futures
async/thread
go block

async/thread

11

(thread & body)

(async/thread (println "Hello"))

Runs body in separate thread

(def adder (async/thread (+ 1 2)))
(async/<!! adder) returns 3

12

(defn producer
 [channel name]
 (doseq [x [1 2 "end"]]
 (do
 (Thread/sleep 100)
 (println name "producing " x)
 (async/>!! channel x)))
 (async/close! channel))

(defn consumer
 [channel]
 (let [input (async/<!! channel)]
 (println "input" input)
 (when input
 (recur channel))))

(let [channel (async/chan 7)]
 (println "Start")
 (async/thread (producer channel "a"))
 (async/thread (producer channel "b"))
 (async/thread (consumer channel))
 (println "consumer started"))

Start
consumer started
=> nil
ba producing 1producing 1

input 1
input 1
b producing 2
a producing 2
input 2
input 2
b a producing end
producing end
input end
input end
input nil

Rock Paper Scissors Example

13

(def MOVES [:rock :paper :scissors])
(def BEATS {:rock :scissors, :paper :rock, :scissors :paper})

(defn winner
 "Based on two moves, return the name of the winner."
 [[name1 move1] [name2 move2]]
 (cond
 (= move1 move2) "no one"
 (= move2 (BEATS move1)) name1
 :else name2))

Report - Helper

14

(defn report
 "Report results of a match to the console."
 [[name1 move1] [name2 move2] winner]
 (println)
 (println name1 "throws" move1)
 (println name2 "throws" move2)
 (println winner "wins!"))

Player

15

(defn rand-player
 "Create a named player and return a channel to report moves."
 [name]
 (let [out (async/chan)]
 (async/go (while true (async/>! out [name (rand-nth MOVES)])))
 out))

Judging results

16

(defn judge
 "Given two channels on which players report moves, create and return an
 output channel to report the results of each match as [move1 move2 winner]."
 [p1 p2]
 (let [out (async/chan)]
 (async/go
 (while true
 (let [m1 (async/<! p1)
 m2 (async/<! p2)]
 (async/>! out [m1 m2 (winner m1 m2)]))))
 out))

Playing single game

17

(defn init
 "Create 2 players (by default Alice and Bob) and return an output channel
of match results."
 ([] (init "Alice" "Bob"))
 ([n1 n2] (judge (rand-player n1) (rand-player n2))))

(defn play
 "Play by taking a match reporting channel and reporting the results of the latest
match."
 [out-chan]
 (apply report (async/<!! out-chan)))

(play (init))

Playing Multiple Games

18

(defn play-many
 "Play n matches from out-chan and report a summary of the results."
 [out-chan n]
 (loop [remaining n
 results {}]
 (if (zero? remaining)
 results
 (let [[m1 m2 winner] (async/<!! out-chan)]
 (recur (dec remaining)
 (merge-with + results {winner 1}))))))

Multiple Games

19

(play-many game 10000) {"Alice" 3323, "Bob" 3326, "no one" 3351}

"Elapsed time: 650.433 msecs"

rock paper scissors lizard spock

20

Try modifying code to play “rock paper scissors lizard spock”

