CS 635 Advanced Object-Oriented Design and Programming
Fall Semester, 2022
Assignment 4
© 2022, All Rights Reserved, SDSU & Roger Whitney
San Diego State University -- This page last updated on 12/2/22

Flyweight
Due Dec 13

In this assignment we will investigate the flyweight pattern. We will look at a flyweight for char-
acters. The example in the text shows an example of an object-oriented word processor that
uses objects to represent characters. One reason they represent characters as objects is that
they use the Composite pattern to represent the contents of a document. Some of the con-
tents, images for example, must be objects. So in a language like Java all the elements of the
document need to be objects. In a document we have letters from an alphabet and font infor-
mation. In theory each character could have different font (font name, point size and style). In
practice the font does not change very often. So we will use the Flyweight to save space. You
will create a Character class that will store only the unicode code point of the character. You
need a Flyweight factory that given a unicode code point (a char in Java) returns the Flyweight
character object for the character. You need to have a single point of access to the same Fly-
weight factory from anywhere in your program. Since documents tend to use the same fonts
repeatedly we will also use a Flyweight factory for fonts. In this factory the input will be a triple:
the font name (Times, Courier, etc), point size (12, 13, etc) and style (bold, italic, underline,
etc). This factory also needs a single point of access.

For the Character Flyweight to work we need to a way to story the extrinsic state of the charac-
ter objects, that is the font information. For this we will use a RunArray. A RunArray keeps track
of runs in a sequence. For example if we have a document that starts with 250 characters in
font A, then has 10 characters in font B and finally 320 characters in font A. The RunArray
needs to store the runs: 250, 10 and 320. It also has to store the font that is associated with
each run. Given any index (0 to 579 or 1 to 580) the run array will return the font used by the
character in that location of the document. So give index 12 the RunArray will return Font A,
given the index 255 will return Font B. When adding runs to the RunArray one needs to indi-
cate the index the run starts at, the length of the run and the value at the run array. So for the
current example we might have:

RunArray test = new RunArray();
test.addRun(0, 250, fontA);
test.addRun(250, 10, fontB);
test.appendRun(320, fontA);

If the run is appended the run array can determine the start index of the run.

The goal of the Flyweight is to save space. So the question is how much space does this save
for sample documents. To answer this question on have to be able to compute the space of
objects. For example on a 64bit machine an empty object in Java takes up 16 bytes, a font ob-
ject takes up 72 bytes. A tool to measure the size of Java objects can be found at: http://ja-

va.dzone.com/articles/java-getting-size-object. Later | will give you some data from sample
documents. You will use the data to compute how much space using flyweights saves.

Page 1 of 3


http://java.dzone.com/articles/java-getting-size-object
http://java.dzone.com/articles/java-getting-size-object

Grading

Item Percent of Grade
Working Code 10%
Unit Tests 10%
Proper implementation of Patterns 60%
Quiality of Code 10%
Computing Space Savings 10%
Sample Text

CS 635 Advanced Object-Oriented Design & Programming

Fall Semester, 2018
Doc 17 Mediator, Flyweight, Facade, Demeter, Active Object
Nov 19, 2019
Copyright ©, All rights reserved. 2019 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license de-

fines the copyright on this document.

Sample Text Information

The sample text contains a total of 356 characters. There are 54 different characters in the
text. There are two font runs. The first run contains 144 characters. The second run contains

212 characters.

The following chart indicates the frequency of the characters in the text. For example there is
one character (4) that occurred four times, there are two characters (n, t) that occurred 18

times each in the text.

Page 2 of 3



http://www.opencontent.org/opl.shtml

Frequency of Number of

Occurrence Characters

with Given

Frequency
41 1
34 1
22 1
17 1
16 1
15 1
14 1
10 3
9 3
8 2
7 3
6 4
5 4
4 5
3 4
2 6

1 13

What to do with the Sample Text

The point of the Flyweight pattern is to save space. The question is how much space we will
save using the pattern. We have two ways to store the above text. The first way is to store 356
character objects with all their state (intrinsic and extrinsic). So we could store the 356 charac-
ters in an array. The other way is to use the flyweights. But the flyweight pattern uses addition-
al data structures which require space. We have the flyweight factories and the run array, and
we still need an array of size 356 spots to point to flyweight objects. So the goal is to compute
the space required to store the document the normal way (array of 356 non-flyweight objects)
versus using the flyweights.

Page 3 of 3



