
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2022

Doc 2 Big Ball of Mud, OO
Aug 25, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

What Compsci textbooks don't tell you

2

What don't they tell you?

What are the causes of bad Software?

3

What is the simple fix?

4

What is a Big Ball of Mud?

5

What Forces Lead to Big Ball of Mud

6

Patterns

7

Big Ball of Mud
Throwaway Code
Piecemeal Growth
Keep it Working
Shearing Layers
Sweeping it Under the Rug
Reconstruction

Big Ball of Mud

8

You need to deliver quality software on time, and under budget.

Therefore, focus first on features and functionality, then focus on architecture and
performance.

Enemy of Big Ball of Mud

9

Top down design

Hire good architects

10

Variable and function names
uninformative

Functions themselves may make extensive use of
global variables,
long lists of poorly defined parameters.

The function themselves are
lengthy and convoluted,
perform several unrelated tasks.

The programmer’s intent is next to impossible to discern.

Problems

11

We built the most complicated system that can possible work

Three ways to deal with BIG BALLS OF MUD

12

http://www.laputan.org/mud/mud.html#BigBallOfMud

Extreme Programming Practices

13

Pair programming
Planning game
Test driven development
Customer part of development team
Continuous integration
Refactoring or design improvement
Small releases
Coding standards
Collective code ownership
Simple design
System metaphor
Sustainable pace

http://en.wikipedia.org/wiki/Refactoring

Throwaway Code

14

You need an immediate fix for a small problem, or a quick prototype or proof of concept.

Therefore, produce, by any means available, simple, expedient, disposable code that
adequately addresses just the problem at-hand.

15

Why do we need throwaway code?

What the main problem with throwaway code?

16

Piecemeal Growth
Users’ needs change with time.

Therefore, incrementally address forces that encourage change and growth.

Allow opportunities for growth to be exploited locally, as they occur.

Refactor unrelentingly.

What is the main problem with Piecemeal
Growth?

17

Keep it Working

18

Maintenance needs have accumulated, but an overhaul is unwise, since you might break
the system.

Therefore, do what it takes to maintain the software and keep it going. Keep it working.

19

How do Piecemeal Growth and Keep it Working lead to a ball of mud?

How can we use Piecemeal Growth and Keep it Working and avoid
the ball of mud?

Is it advisable to use Piecemeal Growth and Keep it Working?

20

Shearing Layers
Different artifacts change at different rates

Therefor
Factor your system so that artifacts that change at similar rates are together

Why?

21

Put things that change at different rates in different places?

Example?

22

Sweep it Under the Rug

Overgrown, tangled, haphazard spaghetti code is hard to comprehend, repair, or
extend, and tends to grow even worse if it is not somehow brought under control.

Therefore, if you can’t easily make a mess go away, at least cordon it off.

This restricts the disorder to a fixed area, keeps it out of sight, and can set the stage
for additional refactoring.

Reconstruction

23

Your code has declined to the point where it is beyond repair, or even comprehension.

Therefore, throw it away and start over.

24

"Plan to throw one away, you will anyway"

Fred Brooks

25

Problems with Starting Over

Cost

Time

Reintroduce bugs

Few features

26

Kent Beck's Properties of Good Style

Kent Beck's Properties of Good Code Stype

27

Once and only once

Lots of little pieces

Replacing objects

Moving Objects

Rates of change

Once and Only Once

28

"In a program written with good style, everything is said once and only once"

If have
several methods with same logic
several objects with same methods

then rule is not satisfied

Lots of little pieces

29

"Good code invariably has small methods and small objects"

Small pieces allow you to satisfy "once and only once"

30

Principles of OO Design, or Everything I Know
About Programming, I Learned from Dilbert

Alan Knight

31

1. Never do any work that you can get someone
else to do for you

32

Excuse me Smithers. I need to know the total bills that have been paid so far this quarter. No,
don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll go through the
records myself. I’m not that familiar with your filing system, but how complicated can it be? I’ll
try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the quarter. No,
I’m not interested in the petty details of your filing system. I want that total, and I’ll expect it
on my desk within the next half millisecond.

Verses

Encapsulation & Responsibility

33

Encapsulation is about responsibility

Who does the work

Who should do the work

2. Avoid Responsibility

34

If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.

class TernarySearchTree {

public void insert(String word) {
root.insert(new StringIterator(word));

}

Have the Node do the work

35

Terms

Class
A blueprint to create objects
Includes attributes and methods that the created objects all share

Object
Allocated region of storage
Both the data and the instructions that operate on that data

http://en.wikipedia.org/wiki/Object_(object-oriented_programming)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Method_(computer_science)

Example

36

class Point
def initialize(x, y)

@x = x
 @y = y

 end

 def to_s
 "Point(#@x,#@y)"
 end

end

example = Point.new(10,5)

example.to_s

Alternative Definition

37

Object
First-class, dynamically dispatched behavior

Behavior
Collection of named operations
Operations can be invoked by clients
Operations may share additional hidden details

Dynamic dispatch
Different objects can implement the same operation name(s) in different ways

First class
Objects have the same capabilities as other kinds of values

Passed to operations
Returned as the result of an operation

Alan Kay Father of Object-Oriented Programing

38

I’m sorry that I long ago coined the term “objects” for this topic because
it gets many people to focus on the lesser idea.

OOP to me means only
messaging,
local retention and protection and hiding of state-process, and
extreme late-binding of all things.

The big idea is “messaging”

The key in making great and growable systems is much more to design how its
modules communicate rather than what their internal properties and behaviors
should be.

Abstraction

39

“Extracting the essential details about an item or group of
items, while ignoring the unessential details.”
 Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the
common pattern and provides a means for specifying which
variation to use.”
 Richard Gabriel

Encapsulation

40

Enclosing all parts of an abstraction within a container

Information Hiding

41

Hiding of design decisions in a computer program

Hide decisions are most likely to change,
To protect other parts of the program

Class

42

Represents an abstraction

Encapsulates data and operations of the abstraction

Hide design decisions/details

Data

Operations

Heuristics

43

2.1 All data should be hidden within it class

2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place

Non-OO items

44

Utility methods

Data classes

Utility method

45

Method in class that
Does not access any field (data member, instance variables)
Just uses parameters

Utility Method - Example

46

class CrosswordPuzzle {
 public void someMethodThatDoesStuff {

 bunch of stuff not shown
 count = vowelCount(aWord);
 blah

 }

 private int vowelCount(String word) {
 int vowelCount = 0;
 for (int k = 0; k< word.length(); k++) {

 char current = word.charAt(k);
 if ((current == 'a') || (current == 'e') || (current == 'i') || (current == "o")

 || (current == "u"))
 vowelCount++;

 }
 return vowelCount;

 }

OO Version

47

class String {
 public int vowelCount {

 int count = 0;
 for (char current in this)

 if (current.isVowel()) count++;
 return count;

}

class CrosswordPuzzle {
 public void someMethodThatDoesStuff {

 bunch of stuff not shown
 count = aString.vowelCount();
 blah

 }

Is this better? Why

class Character {

 public boolean isVowel() {
 return (this == 'a') || (this == 'e') || (this == 'i') || (this == "o")|| (this == "u");

 }
}

Extending Classes

48

Java
Final classes
Can not edit JDK classes

Swift

extension String {
 func foo() -> Int {
 return 5
 }
}

"a".foo()

Kotlin

fun String.foo() : Int {
 return 5
}

"a".foo()

Python 3
Can't add methods outside of class(?)

