
CS 635 Advanced Object-Oriented Design & Programming

Fall Semester, 2022

Doc 4 Code Smells, Refactoring

Sep 6, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Code Smell

2

Hint that something has gone wrong somewhere in your code

http://c2.com/cgi/wiki?CodeSmell

Lists of Code Smells

3

Coding Horror: Code Smells

http://www.codinghorror.com/blog/2006/05/code-smells.html

http://c2.com/cgi/wiki?CodeSmell

Cunningham wiki c2

Comments

4

There's a fine line between comments that illuminate and comments that obscure.

 Are the comments necessary?

Do they explain "why" and not "what"?

Can you refactor the code so the comments aren't required?

And remember, you're writing comments for people, not machines.

http://blog.codinghorror.com/code-smells/

Uncommunicative Name, Vague Identifier

5

Does the name of the method succinctly describe what that method does?

Could you read the method's name to another developer and have them explain to you
what it does?

If not, rename it or rewrite it.

meetsCriteria

flag

http://c2.com/cgi/fullSearch

Inconsistent Names

6

Pick a set of standard terminology and stick to it throughout your methods.

If you have Open(), you should probably have Close().

Type Embedded in Name

7

Avoid placing types in method names;

it's not only redundant, but it forces you to change the name if the type changes.

Conditional Complexity

8

Watch out for large conditional logic blocks

Particularly blocks that tend to grow larger or change significantly over time.

Consider alternative object-oriented approaches such as

decorator,

strategy, or

state.

Dead Code

9

Ruthlessly delete code that isn't being used.

That's why we have source control systems!

Code Smell - Utility Method

10

Utility methods are a sign that related data and operations are not together

Java & OO

11

In many situations we can not OO in Java

Can not keep data and operations together in many of Java's existing classes

Ruby, Objective-C & Smalltalk allow you to add to existing classes

Result

12

Can't practice OO in small cases

Develop poor habits

Lose benefits of OO but don't noticce

One Responsibility Rule

13

"A class has a single responsibility: it does it all, does it well, and does it only"

Bertrand Meyer

Try to describe a class in 25 words or less, and not to use "and" or "or"

If can not do this you may have more than one class

http://c2.com/cgi/fullSearch

Duplicate Code

14

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

15

The average method size should be less than 8 lines of code (LOC) for Smalltalk and 24
LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class

Long Parameter List

16

a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)

Divergent Change

17

If, over time, you make changes to a class that touch completely different parts
of the class, it may contain too much unrelated functionality.

Consider isolating the parts that changed in another class.

ShotGun Surgery

18

If a change in one class requires cascading changes in several related classes,

consider refactoring so that the changes are limited to a single class.

Middle Man

19

If a class is delegating all its work, why does it exist?

Cut out the middleman.

Beware classes that are merely wrappers over other classes or existing
functionality in the framework.

Feature Envy

20

A method seems more interested in a class other than
the one it is in.

Data Clumps

21

Same three or four data items together in lots of places

Primitive Obsession

22

Don't use a gaggle of primitive data type variables as a poor man's substitute for a class.

If your data type is sufficiently complex, write a class to represent it.

Money

Date

Name

Address

Phone Number

Repeated Switch Statements

23

How do you program without them?

Replace Conditional with Polymorphism

switch account {

case BankAccount: account.foo();

case SavingsAccount: account.bar();

case nil: account = new CheckingAccount()

}

account.foobar()

foo verses bar?

nil?

Repeated Switch Statements

24

How do you program without them?

Replace Conditional with Polymorphism

switch size {

case 1..9: small();

case 10: middle();

default: large();

}

Lazy Class

25

Classes should pull their weight.

Every additional class increases the complexity of a project.

If you have a class that isn't doing enough to pay for itself,

can it be collapsed or combined into another class?

Data Class

26

Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup object, they
need to take some responsibility

Inappropriate Intimacy

27

Watch out for classes that spend too much time together,

or classes that interface in inappropriate ways.

Classes should know as little as possible about each other.

Message Chains

28

location = rat.getRoom().getMaze().getLocation()

Negative Slope

29

if (foo) {

if (bar) {

if (cat = dog) {

if (rat < 10) {

...

Temporary Field

30

Field is only used in certain circumstances

Common case

field is only used by an algorithm

Don't want to pass around long parameter list

Make parameter a field

Refused Bequest

31

Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class

Solution Sprawl

32

If it takes five classes to do anything useful, you might have solution sprawl.

Consider simplifying and consolidating your design.

Loops

33

 Replace Loop with Pipeline

Map

Reduce

Filter

Easier to see what is being processed

for (int k = 0; k++; k <= items.size()) {

sum = 0;

if (items[k] > 10) {

sum = sum + 2*items[k] -3;

}

}

items.

filter(item -> item > 10).

map(item -> 2 * item -2).

sum()

Mutable Data

34

Changes to data can often lead to unexpected consequences and tricky bugs

Swift

var a = [1, 2, 3] // mutable

let b = [1, 2, 3] // immutable

Kotlin

var a = [1, 2, 3] // mutable

val b = [1, 2, 3] // immutable

Rust

let a = [1, 2, 3]	 //immutable

let mut b = [1, 2, 3]

Mutable Data

35

 Encapsulate Variable

All updates occur through narrow functions

Extract Function

 Separate the side-effect-free code from anything that performs the update

Separate Query from Modifier

Ensure callers don’t need to call code with side effects unless they really need to.

Combine Functions into Class

Combine Functions into Transform

Limit how much code needs to update a variable

Change Reference to Value

Replace the entire structure rather than modify it

36

Refactoring

Refactoring

37

Changing the internal structure of software that changes its observable behavior

Done to make the software easier to understand and easier to modify

Brief History of Refactoring

38

UIUC

Opdyke, Refactoring Object-Oriented Frameworks, Ph.D. 1992

Brant & Roberts, Refactoring Browser, mid- to late 1990s

Refactoring: Improving the Design of Existing Code, Martin Fowler, 1999

Refactoring: Improving the Design of Existing Code 2nd,

Martin Fowler, Nov 2, 2018

When to Refactor

39

Rule of three

Three strikes and you refactor

When to Refactor

40

When you add a new function

When you need to fix a bug

When you do a code review

When Refactoring is Hard

41

Databases

Changing published interfaces

Major design issues

42

When you add a feature to a program

If needed Refactor the program to make it easy to add the feature

Then add the feature

43

Before you start refactoring

Make sure that you have a solid suite of tests

Test should be self-checking

44

Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?

45

Refactoring in IDE

Refactoring Menu

46

Eclipse Intellij

Rename Class

47

public class Foo {

	 	 public int foo() {

	 	 	 return 10;

	 }

}

public class Bar {

	 public int bar() {

	 	 Foo test = new Foo();

	 	 return test.foo() + 99;

	 }

}

public class NewFoo {

	 	 public int foo() {

	 	 	 return 10;

	 }

}

public class Bar {

	 public int bar() {

	 	 NewFoo test = new NewFoo();

	 	 return test.foo() + 99;

	 }

}

Eclipse Rename

48

Move

49

public class Foo {

	 public int foo() { return 10;}

	

	 public int fooTwo() { return 20; }

}

public class Bar {

	 public int helperMethod(Foo test) {

	 	 return test.foo() + test.fooTwo();

	 }

	

	 public int callHelper() {

	 	 Foo data = new Foo();

	 	 return helperMethod(data);

	 }

}

public class Bar {

	 public int callHelper() {

	 	 Foo data = new Foo();

	 	 return data.sum();

	 }

}

public class Foo {

	 public int foo() { return 10;}

	

	 public int fooTwo() {return 20; }

	 public int sum() {

	 	 return foo() + fooTwo();

	 }

}

Eclipse Move

50

Extract Class

51

Refactoring Tool Issue

52

People tend to only use the features they know

Refactoring Tool Issue

53

Is a tool hard to use because I am unfamiliar with it or is it just hard to use

Refactoring by 41 Professional Programmers

54

Number of Programmers used
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396

Try In You IDE

55

Rename

Move

Encapsulate Field

Extract Method

Extract Class

