
CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2022

Doc 5 Pattern Intro, Iterator Pattern
Sep 8, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Pattern Beginnings

2

"Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the
same way twice"

"Each pattern is a three-part rule, which expresses a relation between a certain
context, a problem, and a solution"

A Pattern Language, Christopher Alexander, 1977

A Place To Wait

3

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time hanging around doing nothing

Cannot enjoy the time since you do not know when you must leave

Classic "waiting room"
Dreary little room
People staring at each other
Reading a few old magazines
Offers no solution

Fundamental problem
How to spend time "wholeheartedly" and
Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
 Playground beside Pediatrics Clinic
 Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
 A window seat that looks down on a street
 A protected seat in a garden
 A dark place and a glass of beer
 A private seat by a fish tank

A Place To Wait

4

Therefore:

"In places where people end up waiting create a situation which makes the waiting
positive. Fuse the waiting with some other activity - newspaper, coffee, pool tables,
horseshoes; something which draws people in who are not simple waiting. And also the
opposite: make a place which can draw a person waiting into a reverie; quiet; a positive
silence"

Chicken And Egg

5

Problem

Two concepts are each a prerequisite of the other
To understand A one must understand B
To understand B one must understand A
A "chicken and egg" situation

Constraints and Forces

First explain A then B
 Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain the other one
 People don't like being lied to

Solution

Explain A & B correctly but superficially

Iterate your explanations with more detail in each iteration

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of Program Design 2, Addison Wesley,
1996

Design Principle 1

6

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define common interfaces for a set of classes

Declare variables to be instances of the abstract class not instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of objects they use,
as long as the objects adhere to the interface the client expects

Client classes/objects remain unaware of the classes that implement these objects.
Clients only know about the abstract classes (or interfaces) that define the interface.

Programming to an Interface

7

Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add(aStudent);

students can be any collection type

We can change our mind on what type to use

Interface & Duck Typing

8

In dynamically typed languages programming to an interface is the norm

Dynamically typed languages tend to lack a way to declare an interface

Design Principle 2

9

Favor object composition over class inheritance

Composition
 Allows behavior changes at run time
 Helps keep classes encapsulated and focused on one task
 Reduce implementation dependencies

Inheritance
class A {
 Foo x
 public int complexOperation() { blah }
}

class B extends A {
 public void bar() { blah}
}

Composition
class B {
 A myA;
 public int complexOperation() {
 return myA.complexOperation()
 }

 public void bar() { blah}
}

Designing for Change

10

Algorithmic dependencies
 Builder, Iterator, Strategy,

 Template Method, Visitor

Inability to alter classes conveniently
 Adapter, Decorator, Visitor

Dependence on specific operations
 Chain of Responsibility, Command

Dependence on hardware and software platforms
 Abstract factory, Bridge

Tight Coupling
 Abstract factory, Bridge, Chain of Responsibility,
 Command, Facade, Mediator, Observer

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Dependence on object representations or implementations
 Abstract factory, Bridge, Memento, Proxy

Creating an object by specifying a class explicitly
 Abstract factory, Factory Method, Prototype

Kent Beck's Rules for Good Style

11

One and only once

In a program written in good style, everything is said once and only once

Methods with the same logic
Objects with same methods
Systems with similar objects

 rule is not satisfied

Lots of little Pieces

12

"Good code invariably has small methods and small objects"

Small pieces are needed to satisfy "once and only once"

Make sure you communicate the big picture or you get a mess

Rates of change

13

Don't put two rates of change together

An object should not have a field that changes every second & a field that change
once a month

A collection should not have some elements that are added/removed every second
and some that are add/removed once a month

An object should not have code that has to change for each piece of hardware and
code that has to change for each operating system

Replacing Objects

14

Good style leads to easily replaceable objects

"When you can extend a system solely by adding new objects without modifying
any existing objects, then you have a system that is flexible and cheap to maintain"

Moving Objects

15

"Another property of systems with good style is that their objects can be easily
moved to new contexts"

Iterator Pattern

16

Provide a way to access the elements of a collection sequentially without
exposing its underlying representation

Java Iterators

17

External

Iterator
hasNext()
next()
remove() Optional
forEachRemaining

ListIterator
add(), remove(), set() Optional
hasNext(), hasPrevious()
next(), previous()
nextIndex(), previousIndex()

SplitIterator
forEachRemaining() + others
For concurrent processing

Internal

forEach

Java Iterator

18

LinkedList<Strings> strings = new LinkedList<Strings>();

code to add strings

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);
 }
}

for (String element : strings) {
 if (element.size % 2 == 0)
 System.out.println(element);
}

Syntax sugar for above

Python Iterator

19

a = ['house', 'car', 'bike']

for x in a:
 print(x)

items_iterator = iter(a)
print(next(items_iterator))
print(next(items_iterator))
print(next(items_iterator))
print(next(items_iterator)) #error raised here

Lambda & Closure

20

Lambda
Function without a name

Closure
Store the environment with the function

Lambda Expression - Java 8+

21

Anonymous Function

(Integer a, Integer b) -> a + b

arguments body

(Integer start, Integer stop) -> {
 for (int k = start; k < stop; k++)
 System.out.println(k);
}

Short Version of Lambda Syntax

22

(String text) -> text.length(); (Integer a, Integer b) -> a + b

(a, b) -> a + btext -> text.length();

Using Lambdas

23

Function<String,Integer> length = text -> text.length();
int nameLength = length.apply("Roger Whitney");

BiFunction<Integer,Integer,Integer> adder = (a, b) -> a + b;
int sum = adder.apply(1, 2);

Other Types of Lambdas

24

 Predicate<Integer> isLarge = value -> value > 100;
 if (isLarge.test(59))
 System.out.println("large");

 Consumer<String> print = text -> System.out.println(text);
 print.accept("hello World");

 int size = xxx;
 Supplier<List> listType = size > 100 ? (()-> new ArrayList()): (() -> new Vector());
 List elements = listType.get();
 System.out.println(elements.getClass().getName());

Lambda Types

25

Predicate<T> -- a boolean-valued property of an object
Consumer<T> -- an action to be performed on an object
Function<T,R> -- a function transforming a T to a R
Supplier<T> -- provide an instance of a T (such as a factory)
UnaryOperator<T> -- a function from T to T
BinaryOperator<T> -- a function from (T, T) to T

New - See java.util.function Interfaces

java.lang.Runnable
java.util.concurrent.Callable
java.security.PrivilegedAction
java.util.Comparator
java.io.FileFilter
java.beans.PropertyChangeListener
etc.

Pre-existing

http://download.oracle.com/javase/7/docs/api/java/lang/Runnable.html
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/Callable.html
http://download.oracle.com/javase/7/docs/api/java/security/PrivilegedAction.html
http://download.oracle.com/javase/7/docs/api/java/util/Comparator.html
http://download.oracle.com/javase/7/docs/api/java/io/FileFilter.html
http://www.fxfrog.com/docs_www/api/java/beans/PropertyChangeListener.html

Functional Interfaces

26

Interface with one method

Can be used to hold a lambda

java.lang.Runnable

void run()

Runnable Example

27

Runnable test = () -> System.out.println("hello from thread");
Thread example = new Thread(test);
example.start();

OnClickListener Example

28

button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View source) {
 makeToast();
 }
});

button.setOnClickListener(event -> makeToast());

Internal Iterator - forEach

29

String[] rawData = {"cat", "can", "bat", "rat"};

List<String> data = Arrays.asList(rawData);

data.forEach(word ->System.out.println(word));

Lambda Expression - Python

30

inc = lambda n : n + 1
result = inc(11)
print(result) # 12

multi_args = lambda a, b : a + b
result = multi_args(1,2)
print(result) # 3

def adder(n):
 return lambda k : k + n

add5 = adder(5)
add9 = adder(9)
result = add5(1)
print(result) # 6

result = add9(1)
print(result) # 10

adder shows that Python lambdas
are also closures

Motivating Example - Sorting

31

a = ['house', 'car', 'bike']

a.sort()
print(a)

a.sort(key = lambda x: len(x))
print(a)

['bike', 'car', 'house']

['car', 'bike', 'house']

a.sort(key = len)

Java Sorting

32

List Method
sort(Comparator<? super E> c)
Sorts this list according to the order induced by the specified Comparator.

public class PidCompare implements Comparator<Process> {
@Override
public int compare(Process a, Process b) {

return a.pid() - b.pid();
}

}

aList.sort(new PidCompare());

New Options

33

Comparator<Process> compareById = Comparator.comparing(e -> e.pid());

aList.sort(compareById);

aQueue.sort((Process a, Process b) -> a.pid().compareTo(b.pid)));

Documentation

34

Java lambda Tutorial
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Java 8 Lambdas, Warburton, O’Reilly Media, 2014
http://libproxy.sdsu.edu/login?url=http://proquest.safaribooksonline.com/

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Java Iterators

35

External Internal

Iterator

ListIterator

forEach

When you don’t need all items

When complicated logic

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);
 }
}

When you want all items

Easier to implement

Pattern Parts

36

Intent

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample Code

Iterator Structure

37

CreateIterator()

Aggregate

CreateIterator()

ConcreteAggregate

First()

Next()

IsDone()

CurrentItem()

Iterator

return new ConcreteIterator(this)

Client

ConcreteIterator

Iterator Structure & Names

38

CreateIterator()

Aggregate

CreateIterator()

ConcreteAggregate

First()

Next()

IsDone()

CurrentItem()

Iterator

return new ConcreteIterator(this)

Client

ConcreteIterator

Aggregate, ConcreteAggregate, Client, ConcreteIterator

Roles that classes will perform
Classes will not have those names

Issues - Concrete vs. Polymorphic Iterators

39

Concrete
Reader iterator = new StringReader("cat");
int c;
while (-1 != (c = iterator.read()))
 System.out.println((char) c);

Polymorphic
Vector listOfStudents = new ArrayList();

// code to add students not shown

Iterator list = listOfStudents.iterator();
while (list.hasNext())
 System.out.println(list.next());

Memory leak issue in C++, Why?

Issue - Who Controls the Iteration?

40

External (Active)
var numbers = new LinkedList();

code to add numbers

Vector evens = new Vector();
Iterator list = numbers.iterator();
 while (list.hasNext()) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
 if ((b % 2) == 0)
 evens.add(a);
 }

Internal (Passive)
numbers = LinkedList.new

code to add numbers

evens = numbers.find_all { |element| element.even? }

Issue - Who Defines the Traversal Algorithm

41

Object being iterated Iterator

Issue - Robustness

42

What happens when items are added/removed from the iteratee while an iterator exists?

Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
listOfStudents.add(new Student("Roger"));

list.hasNext(); //What happens here?

43

Java Streams

Stream

44

java.util.stream.Stream

Sequence of values

Operations on the values

Operations are chained together into pipelines

http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html

Example

45

 String[] words = {"a", "ab", "abc", "abcd", "bat"};
 List<String> wordList = Arrays.asList(words);
 List<String> longWords

 longWords = wordList.stream()
 .filter(s -> s.length() > 2)
 .filter(s -> s.charAt(0) == 'a')
 .map(s -> s.toUpperCase())
 .collect(Collectors.toList());
 System.out.println(longWords);

Lazy Evaluation

46

 String[] words = {"a", "ab", "abc", "abcd", "bat"};
 List<String> wordList = Arrays.asList(words);
 List<String> longWords

 longWords = wordList.stream()
 .filter(s -> s.length() > 2)
 .filter(s -> s.charAt(0) == 'a')
 .map(s -> s.toUpperCase())
 .collect(Collectors.toList());
 System.out.println(longWords);

Only One pass of List
to do all operations

4.0 gpa

47

List<Student> = students.stream()
 .filter(student -> student.gpa() >= 4.0)

 .collect(Collectors.toList());

Stream methods

48

count()
distinct
filter
findAny
findFirst
flatMap
forEach
forEachOrdered
limit
map
max
min
nonMatch
reduce
sorted

For More Information

49

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-libraries-final.html

State of the Lambda: Libraries Edition

http://tinyurl.com/mshjfkj

State of the Lambda

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

http://tinyurl.com/kg5m9zu

Ruby Iterator Examples

50

a.each {|x| puts x}

1
2
3
4

result = a.collect {|x| x + 10}
puts result

11
12
13
14

result = a.find_all {|x| x > 2 }
puts result

3
4

puts a.any? {|x| x > 2} true

puts a.detect {|x| x > 2 } 3

 a = [1, 2, 3, 4]

Python

51

a = ['house', 'car', 'bike']

def is_even(n) :
 return n % 2 == 0

result = map(len, a)
b = list(result)
print(b) # [5, 3, 4]

even = filter(is_even, map(len, a))
print(list(even)) # [4]
print(list(even)) # []

Some Higher Order Functions

52

reduce
Processes a collection to a single value (which could be a collection)

filter
Select elements of a collection

map
Transforms elements of a collection

reduce

53

Common pattern

loop through a collection to compute some result

let data = [1,1,2,3,5,8]

var sum = 0
for n in data {
 sum += n
}

var product = 1
for n in data {
 product *= n
}

let easyProduct = data.reduce(1, *)

let easySum = data.reduce(0, +)

More Reduce Examples

54

let words = ["The", "cat", "in", "the", "hat"]

let title = words.reduce("", {$0 + " " + $1}) // “ The cat in the hat”

let data = [1,8,1,2,3,5]

let maxElement = data.reduce(data[0], {max($0, $1)})

Filter

55

let data = [1,8,1,2,3,5]

let foo = data.filter({$0 > 3}) // [8, 5]

let foo = data.filter {$0 > 3} // don’t need the ()

let largeSum = data.filter {$0 > 3}
 .reduce(0, +)

Rust Example

56

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 let mut results = Vec::new();

 for line in contents.lines() {
 if line.contains(query) {
 results.push(line);
 }
 }
 results
}

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 contents
 .lines()
 .filter(|line| line.contains(query))
 .collect()
}

test bench_search_for ... bench: 19,620,300 ns/iter (+/- 915,700)
test bench_search_iter ... bench: 19,234,900 ns/iter (+/- 657,200)

map

57

let data = [1,1,2,3,5,8]

let fiveAdded = data.map{$0 + 5} // [6, 6, 7, 8, 10, 13] Swift 2.3 & 3.0

let students = ["Sam": 3.2, "Pete": 3.9, "Jill": 3.7]

let scores = students.map({$0.1}) // [3.2, 3.9, 3.7]

let sumOfSquares = data.map {$0 * $0}.reduce(0, +) // 104

Selecting 6 most recent Photos in transcript

58

var photos: [PhotoItem] = []
for time in transcript.reversed() {

if let photo = item as? PhotoItem {
photos.append(photo)
if photos.count == 6 {

break
}

}
}

transcript
.reversed()
.compactMap { $0 as? PhotoItem }
.prefix(6)

transcript
.compactMap { $0 as? PhotoItem }
.suffix(6)
.reversed()

