CS 635 Advanced Object-Oriented Design & Programming
Fall Semester, 2022
Doc 16 Cohesion, Metrics
Oct 25, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

Reference

Object Coupling and Object Cohesion, chapter 7 of Essays on Object-Oriented Software
Engineering, Vol 1, Berard, Prentice-Hall, 1993,

Cyclomatic complexity, http://en.wikipedia.org/wiki/Cyclomatic_complexity
Lines of Code, http://en.wikipedia.org/wiki/Source_lines of code
Eclipse Metrics, http://metrics.sourceforge.net/

Specialization Index, http://semmle.com/documentation/semmlecode-glossary/
specialization-index-of-a-type/

OO Design Quality Metrics: An Analysis of Dependencies, Robert Martin, http://
www.objectmentor.com/resources/articles/oodmetrc.pdf

Source code for twitter4j, http://yusuke.homeip.net/twitterdj/en/index.html
Eclipse Metrics Plugin, http://eclipse-metrics.sourceforge.net/

Object-Oriented Metrics: Measures of Complexity, Brian Henderson-Sellers,
Prentice Hall, 1996

https://xkcd.com/2224/

SOFTWUARE
VERSION
NUMBER AN UPDATE FINALLY
BREAKS A FEATURE
TM UNWILUNG
To LOSE
~—— ' 227
NEWEST
vggsgN | THE ABYSS—
MY CURRENT
VERSION

A FIRST < OLDEST
INSTALL SUPPORTED
VERSION
TIME
—>

ALL SOFTLWARE 15 SOFTWARE AS A SERVICE.

3

Cohesion

Cohesion

"Cohesion is the degree to which the tasks performed by a single module
are functionally related.”

IEEE, 1983

"Cohesion is the "glue" that holds a module together. It can be thought of as the
type of association among the component elements of a module. Generally, one
wants the highest level of cohesion possible."

Bergland, 1981

"A software component is said to exhibit a high degree of cohesion if the elements in
that unit exhibit a high degree of functional relatedness. This means that each
element in the program unit should be essential for that unit to achieve its purpose.”

Sommerville, 1989

Types of Module Cohesion

Coincidental (worst)
Logical

Temporal
Procedural
Communication
Sequential

Functional (best)

Coincidental Cohesion

Little or no constructive relationship among the elements of the module

Common Object Occurrence
Object does not represent any single object-oriented concept

Collection of commonly used source code as a class inherited via multiple
iInheritance

class Rous{
public static int findPattern(String text, String pattern) { // blah}

public static int average(Vector numbers) { // blah}

public static OutputStream openFile(String fleName){ // blah}
}

Logical Cohesion

Module performs a set of related functions, one of which is selected via function
parameter when calling the module

Cure — Isolate each function into separate operations

public void sample(int flag){
switch (flag A

case ON:
/[bunch of on stuff
break;

case OFF:
// bunch of off stuff
break;

case CLOSE:
/[bunch of close stuff
break;

case COLOR:
/[bunch of color stuff
break;

;!

Temporal Cohesion

Elements are grouped into a module because they are all processed within the same
limited time period

Common example

"Initialization” modules that provide default values for objects
"End of Job" modules that clean up

procedure initializeData() {
font = "times";
windowSize = "200,400";
foo.name = "Not Set";
foo.size = 12;
foo.location = "/usr/local/lib/java®;

}

Temporal Cohesion

Cure
Each object should have a constructor and destructor

How is this better?

|0

Procedural Cohesion
Groups processing elements based on procedural or algorithmic relationships
Procedural modules are application specific
In context the module seems reasonable
Outside the context modules seem strange and very hard to understand

Can not understand module without understanding the program and the
conditions existing when module is called

Makes module hard to modify, understand

Procedural Cohesion

class LinkedList {
public boolean add(String item) { blah }
public Object get(int index) { blah }
public Iterator iterator() { blah}

public Object[] studentsOnProbabation() { blah }

12

13

Class Builder verse Program writer

Communication Cohesion

Operations of a module all operate upon the same input data set and/or produce the
same output data

Cure - Isolate each element into separate modules

Rarely occurs in object-oriented systems due to polymorphism (overloading)

14

Sequential Cohesion

Sequential association the type in which the output data from one
processing element serve as input data for the next processing element

A module that performs multiple sequential functions where the sequential
relationship among all of the functions is implied by the problems or
application statement and where there is a data relationship among all of the
functions

Cure — Decompose into smaller modules

|5

Functional Cohesion

If the operations of a module can be collectively described as a single specific
function in a coherent way, the module has functional cohesion

If not, the module has lower type of cohesion

In an object-oriented system:

Each operation in public interface of an object should be functional cohesive

Each object should represent a single cohesive concept

16

Informational Strength Cohesion

Myers states:

"The purpose of an informational-strength module is to hide some concept, data
structure, or resource within a single module.

An informational-strength module has the following definition:
It contains multiple entry points
Each entry point performs a single specific function

All of the functions are related by a concept, data structure, or resource that
IS hidden within the module”

|7

Object Cohesion

Object Cohesion

The degree to which components of a class are tied together
Evaluating cohesion requires:
Technical knowledge of the application domain

Some experience in building, modifying, maintaining, testing and managing
applications in the appropriate domain

Technical background in and experience with reusability

19

Questions to probe cohesiveness of an object

Does the object represent a complete and coherent concept or does it more
closely resemble a partial concept, or a random collection of information?

Does the object directly correspond to a "real world entity," physical or logical?

Is the object characterized in very non-specific terms?
Collection of data, statistics, etc.

Do each of the methods in the public interface for the object perform a single
coherent function?

If the object (or system of objects) is removed from the context of the immediate
application, does it still represent a coherent and complete object-oriented
concept?

20

Questions to probe cohesiveness of system of

Does the system represent an object-oriented concept?

Do all the objects directly support, or directly contribute to the support of, the
object-oriented concept that the system represents?

Are there missing objects?

21

Objects in Isolation

Isolation means without considering any hierarchy that may contain the
object or class

22

Individual Objects

A primitive method is any method that cannot be implemented simply, efficiently, and
reliably without knowledge of the underlying implementation of the object

A composite method is any method constructed from two or more primitive methods
— sometimes from different objects

A sufficient set of primitive methods for an object is a minimum set of primitive
methods to accomplish all necessary work with on the object

A sufficient set of primitive methods has two major problems:

Some tasks may be awkward and/or difficult with just a sufficient set of primitive
methods

A sufficient set of primitive methods may not allow us to fully capture the
abstraction represented by the object

A complete set of primitive methods is a set of primitive methods that both allows
us to easily work with the object, and fully captures the abstraction represented by the
object.

23

To implement Java Collection

Subclass java.util. AbstractList and implement Subclass java.util. AbstractCollection and implement

add(int index, Object element) add(int index, Object element)
get(int index) iterator()

remove(int index) size()

size()

lterator implements
hasNext()
next()
remove()

set(int index, Object element)

Is either of these a sufficient set of primitive
methods?

24

Java's ArrayList

add(int index, Object element)
addAll(int index, Collection c)
contains(Object elem)
equals
indexOf(Object elem)
lastindexOf(Object elem)
removeAll
size()
toArray(Object[] a)

add(Object o)
clear()
containsAll
get(int index)
isEmpty()
listlterator
retainAll
subList
toString

addAll(Collection c)

clone()

ensureCapacity(int minCapacity)
hashCode
iterator
remove(int index)
set(int index, Object element)
toArray()
trimToSize()

Is this a complete set of primitive methods?

25

Ruby Array

+
any!?
compact
detect
eql?
flatten
index
inspect
max
Pop
reverse
size
to a

uniq!

26

&
<<
assoC
compact!
each
fetch
flatten!
indexes
join
member?
push
reverse!
slice
to_ary

unshift

at
concat
each_index
fill
frozen?
indices
last
min
rassoc
reverse_each
slice!
to_s

values_at

clear
delete

each with_index
find

grep
initialize_copy
length
nitems
reject
rindex
sort

to_set

Zip

[1=
abbrev
collect

delete_at
empty!
find_all
hash
inject
map
pack
reject!
select
sort!

transpose

all?
collect!
delete if
entries
first
include!?
insert
map!
partition
replace
shift
sort_by

uniq

Smalltalk OrderedCollection 1

’

add:beforelndex:

addlLast;

allSatisfy:
asList

asSortedStrings

at:put:

changeCapacityTo:

copyEmpty:
copyWith:
do:separatedBy:
find:

first:

grow

includes:

27

addAll:
addLastNoCheck:

anySatisfy:
asOrderedCollection

asSortedStrings:

atAll:put:

changeSizeTo:
copyFrom:to:
copyWithout:

doWithIndex:
findFirst:
firstObjectError

growSize

identitylndexOf:ifAbsent:

add:
addAllFirst:

after:

asArray

asSet

asSortedStrings:with:

atAllPut;

collect;

copyReplaceAll:with:

detect:

emptyCheck
findFirst:startingAt:

fold:

growToAtLeast:

add:after:
addAllLast;

allButFirst;

asBag
asSortedCollection

asSortedStringsWith:

before:

contains:

copyReplaceFrom:to:with:

detect:ifNone:

emptyCollectionError

findLast:

forStackDumpPrintUsing:

hash

identitylndexOf:from:to:
ifAbsent:

add:before:
addFirst:

allButLast:

asFixedArgument
asSortedCollection:

at:
capacity

copyEmpty
copyUpTo:

do:

errorOutOfBounds

first

groupedBy:

identitylndexOf:

Smalltalk OrderedCollection 2

increaseCapacity
inspectorClass
isSequenceable

last:

makeRoomAtFirst
noMatchError

notKeyedError

writeStream

remove:
removeFirst
replaceAll:with:
reverse
runsSatisfying:do:

storeOn:

28

indexOf:
inspectorClasses
isWeakContainer

lastindexOf:
makeRoomAtLast
noSuchElementError

occurrencesOf:

printOn:

remove:ifAbsent;

removeFirst:

replaceAll:with:from:to:

reverseDo:
select:

swap:with:

indexOf:ifAbsent:
isEmpty

isWeakContainer:

lastindexOf:ifAbsent:

maxPrint
notEmpty
piecesCutWWhere:
readStream

removeAll:

removelndex:

replaceFrom:to:with:

runsFailing:
setindices

tokensBasedOn:

inject:into:
isSNotEmpty
keysAndValuesDo:

lastObjectError

newReadWriteStream
notEnoughElementsError

piecesCutWhere:do:

readWriteStream

removeAllSuchThat:

removelast

replaceFrom:to:with:startingAt:

runsFailing:do:
setlndicesFrom:
trim

printBrieflnspectorTextOn:

insert:before:
isSameSequenceAs:
last

literalArrayEncoding

nextlndexOf:from:to:
notFoundError

previndexOf:from:to:

reject:
removeAtindex:
removelast:
representBinaryOn:
runsSatisfying:
size

with:do:

Smalltalk OrderedCollection 3

decrementBy:boundedBy:highValue:wrapAround:
startingAt:.replaceElementsin:from:to:
replaceElementsFrom:to:withArray:startingAt:
replaceElementsFrom:to:withByteArray:startingAt:
replaceElementsFrom:to:withByteEncodedString:startingAt:
replaceElementsFrom:to:withCharacterArray:startingAt:
replaceElementsFrom:to:withintegerArray:startingAt:
replaceElementsFrom:to:withLinkedList:startingAt:
replaceElementsFrom:to:withSequenceableCollection:startingAt:
replaceElementsFrom:to:withTwoByteString:startingAt:
replaceElementsFrom:to:with\WordArray:startingAt:
indexOfSubCollection:startingAt:
indexOfSubCollection:startingAt:ifAbsent:
incrementBy:boundedBy:lowValue:wrapAround:

29

Levels of Cohesion

An object is not as cohesive as it could be if the public interface contains:

Only primitive methods, but does not fully capture the abstraction represented by the
object

Primitive and composite methods, but does not fully capture the abstraction represented
by the object

A sufficient set of primitive methods with composite methods

No primitive methods, just composite methods

Note

30

Objects with a sufficient set of primitive methods with composite methods is more
cohesive than objects with out a sufficient set of primitive methods

All public methods must directly support the abstraction represented by the object. The
methods must make sense when object is removed from the application

Composite Objects

A composite object is an object that is conceptually composed of two, or more, other
objects, which are externally discernible.

Component objects are those that make up the composite object.

Component objects are externally discernible if

The externally discernible state of the object is directly affected by the presence or
absence of one or more component objects

Component objects can be directly queried or changed via methods in the public
interface of the composite object and/or

31

Ranking of Cohesion of Composite Objects

Externally discernible component objects not related

Some externally discernible component objects are related, the group component
objects does not make sense

The group component objects does not represent a single stable object-oriented
concept, but are all bound together some how in an application

A majority of the externally discernible component objects support a single,
coherent, object-oriented concept, but at least one does not

All of the externally discernible component objects support a single, coherent,
object-oriented concept, but at least one needed is missing

All of the externally discernible component objects support a single, coherent,
object-oriented concept, and none are missing

32

Accessing Cohesion of an Individual Object

Assessment of the public methods/public non-methods/component objects
Are all the items appropriate for the given object?
Do we have at least a minimally sufficient set of items?

Do we have extra or application-specific items?

33

Object Coupling

34

35

Object Coupling

N

Interface Coupling

Inter% Coupling
——

/

v
‘ﬁside Internal Outside Internal
Coupling Coupling

e

r<
From the

_ From U\nderneath
side

Internal Coupling & Cohesion

Internal Coupling
Physical relationships among the items that comprise an object

Cohesion
Logical relationships among the items that comprise an object

36

Interface Coupling

One object refers to another specific object, and the original object
makes direct references to one or more items in the specific object's
public interface

Includes module coupling already covered
Weakest form of object coupling, but has wide variation

Issues
Obiject abstraction decoupling
Selector decoupling
Constructor decoupling
Iterator decoupling

37

Object Abstraction Decoupling

Assumptions that one object makes about a category of other objects are isolated and
used as parameters to instantiate the original object.

C++/Java 1.5 Example

class LinkedListCell {
int cellltem;
LinkedListCell* next;

/| code can now use fact that cellltem is an int
if (cellltem == 5) print("We Win");

template <class type>

class LinkedListCell#2 {
type cellltem;
LinkedListCell* next;

// code does not know the type, it is just a cell item,
/l it becomes an abstraction

38

Selectors

Return state information about their encapsulated object and
Do not alter the state of their encapsulated object

public void display() {
Swing GUI code to display the counter

}

Selector
decoupling

public String toString() {return String.valueOf(count);}

39

Selector Decoupling

Counter Example
class Counter{
int count = 0;

public void increment() { count++; }
public void reset() {count=0;}
public void display() {
Java Swing code to display the counter
in a slider bar

Selector Decoupled
class Counter{
int count = 0;

public void increment() { count++; }
public void reset() { count =0; }
public int count() {return count;}

public String toString() {return String.valueOf(count);}

40

Counter

lterator

Allows the user to visit all the nodes in a homogeneous composite object
and to perform some user-supplied operation at each node

4]

Primitive Methods

Any method that cannot be implemented simply, efficiently, and reliably
without knowledge of the underlying implementation of the object

Functionally cohesive, they perform a single specific function

Small, seldom exceed five "lines of code"

Types
Selectors (get operations)

Constructors (not the same as class constructors)
lterators

42

Constructors

Operations that construct a new, or altered version of an object

class Calendar {
public void getMonth(from where, or what) { blah }

}

class Calendar {
public static Calendar fromString(String date) { blah}

}

43

Primitive Objects

Primitive objects are objects that are both:

Defined in the standard for the implementation language
Globally known

Primitive objects don't count in coupling with other objects

Why not?

44

45

Object Coupling

/

Interface Coupling

Inside Iﬁt/ernal
Coupling

Internal Coupling

From the
side

Outside Internal
Coupling

From Underneath

Inside Internal Object Coupling

Coupling between state and operations of an object
The big issue: Accessing state

Changing the structure of the state of an object requires changing all
operations that access the state including operations in subclasses

Solution: Access state via access operations

C++ implementation
Provide private functions to access and change each data member

46

Outside Internal Coupling from Underneath

Coupling between a class and subclass involving private state and private
operations

Major Issues
Access to inherited state
Direct access to inherited state

Access via operations

Unwanted Inheritance

Parent class may have operations and state not needed by subclass

47

Outside Internal Coupling from the Side

Class A accesses private state or private operations of class B

Class A and B are not related via inheritance

Main causes
Using non-object-oriented languages

Special language "features”
C++ friends

48

Metrics

49

Metrics

DeMarco's Principle

Effort moves toward whatever is measured

OUR GOAL T35 TO WRITE
BUOGFREE SOFTWARE.
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FIX.

S . Atms E-mall: SCOTTADAMSEAOL.COM

50

l’i,fa'} © 1995 United Feature Syndicate, Inc.(NYC)

1 HOPE
THLS
DRIVES
THE RIGHT
BEHAVIOR,

]
<
S

oM

TM GONNA
WRITE ME A
NEW MINIVAN
THIS AFTER-
NOON!

ac,

The Swedish Army Dictum

When the map and the territory don't agree, always believe the territory.

51

Eclipse Metrics 1.3.6

Docs Source Forge Site

http://metrics.sourceforge.net/ http://sourceforge.net/projects/metrics

Generates about 20 metrics
Displays result in tables in Eclipse
Generates dependency graphs

52

Eclipse Metrics Plugin

http://eclipse-metrics.sourceforge.net/

Author: Lance Walton

Generates about same metrics as Metrics 1.3.6
Exports results to html or csv
Generates table and graphs

53

Lines Of Code

Rough measure of size
Effort is highly correlated with SLOC

Physical SLOC
Code + comments + blank lines
Not count blank lines over 25% of a section
Eclipse Metrics - calls this Total Lines of Code (TLOC)

Logical SLOC
Just lines of actual code
Eclipse Metrics
calls this Method Lines of Code (MLOC)
But only code inside method bodies

54

Basic COCOMO

Software Cost Estimation Model

Effort Applied = a(KLOC)P [man-months |
Type a b
Organic 2.4 1.05
Semi-detached 3 .12
Embedded 3.6 |.2
Organic

Small team, less than rigid requirements
Semi-detached

Medium teams,
Embedded

Tight constraints

55

Example - 2 KLOC Embedded

Effort Applied = a(KLOC)b

Effort Applied = 3.6%(2)120 = 8.3 man-months

56

[man-months]

Problems with LOC

Language differences

Hand written code verses autogenerated code
Programmer variation

Defining and counting LOC

Coding accounts for about 35% of overall effort

57

Twitter4) Example

Metric . Total | Mean | 5td. Dev. | Maximum |
¥ Total Lines of Code 5161
¥ java 6208
P twitterdj.org.json 3193
P twitterd] 2489
P twitterdj.http 94
P twitterdj.examples 332
¥ java 1253
P twitterd] 1115
P twitterdj.http 138
¥ Method Lines of Code (avg/max per method) 5854 | 7.254 22.032 518
¥ java 4599 £.949 22.726 518
P twitterdj.org.json 2759 | 14.295 41.037 518
P twitterdj.http 357 5.626 10.117 7B
P twitterdj.examples 240 | 26.667 14 877 57
P twitterd| 1343 3.324 4.324 29
¥ java 955 9.363 16.298 123
P twitterd] 853 9.374 16.949 123
P twitterdj.http 102 9.273 9.304 33

58

Occurrences

1407

130+

120

110+

100+

901

801

707

60

50+

401

301

20

101

Eclipse Metrics Plugin

Lines of Code in Method

59

3 4 5 6 7 8 91011121314151617181920212223242526272829>(=)3

Lines of Code in Method

W Out of Range M In Range |

Occurrences

230
2201
210
200
1901
1801
1701
1601
1501
1401
1307
120
110+
1007
90+
801
707
60
501
401
301
201
107

Eclipse Metrics Plugin

Number of Statements

60

0 1 2 3 456 7 8 951011121314 1516171819202122232425262728293031323334353637383928

Number of Statements

B Out of Range M In Range |

More Size Metrics

Number of Packages
Number of Interfaces
Number of classes per Package

Metric Total Mean | Std. Dev. Maximum
¥ MNumber of Classes (avg/max per packageFragment 58 9.667 5.558 18
> java 49 12.25 4 815 18

> java 9 4.5 2.5 7

61

McCabe Cyclomatic Complexity
Number of linearly independent paths through a program

From graph theory

M=E-N+2P

M = cyclomatic complexity

E = the number of edges of the graph

N = the number of nodes of the graph

P = the number of connected components.

62

Example

if(c1())
f1();

else
f2();

if(c2())
f3();

else
f4();

63

< m2Z

oo O

-7 +2"1=3

What does it tell us?

branch coverage < cyclomatic complexity < number of paths

Cyclomatic Complexity

Is an upper bound for the number of test cases that are necessary to
achieve a complete branch coverage

Is a lower bound for the number of paths through the code

64

Cyclomatic Complexity & Quality
Higher Cyclomatic Complexity might indicate lower cohesion

One study indicated it is better indicator than metrics designed for cohesion

Some evidence that higher Cyclomatic Complexity implies more bugs

65

NIST Structured Testing methodology

Split modules with cyclomatic complexity greater than 10

It may be appropriate in some circumstances to
permit modules with a complexity as high as 15

66

http://en.wikipedia.org/wiki/NIST

Eclipse Metrics 1.3.6

| Metric '\ Total | Mean | 5td. Dev. |Maximum |
¥ McCabe Cyclomatic Complexity (avg/max per method) 2.15 3.569 46
¥ java 2.288 3.787 46
¥ twitterdj.org.json 4.212 5.9 46
P JSOMML.java 10.286 15.229 46
b XML.java 11.5 12.42 36
b XMLTokener.java 12.143 9.463 28
P Testjava 21 0 21
b |SONObject java 3.552 4.306 19
P SOMNTokener.java 4,688 3.531 14
B HTTP.java 7.5 4.5 12
b SOMNArray.java 2.2 2.04 12
 CDL.java 4.3 3.132 11
= HTTPTokener.java 5.5 4.5 10
P JSONWriter java 2. 786 2.042 8
= Cookie.java 5.75 1.299 7
CookieList.java 3 1 d
B JSOMStringer.java 1.5 0.5 2
P JSOMException.java 1 0 1
JS0ONString.java 0 0
P twitterdi 1.408 2.099 29
B twitterdj.http 2.03 2.359 16
b twitterdj.examples 3.333 1.333 3]
> java 1.196 0.505 7

o/

Occurrences

Eclipse Metrics Plugin

Cyclomatic Complexity

5751
550
5251
500
475 -
450
425
400
3751
350
3251
3001
2751
2507
2257
2007
175
150
1251
1001
751
501
251

68

3 B 5

Cyclomatic Complexity

B Out of Range M In Range

Weighted Methods per Class (WMC)

Metric

¥ Weighted methods per Class (avg/max per type)

¥ java

P twitterdj.org.json
P twitterd

P twitterdj.http

P twitterdj.examples

¥ java

P twitterd
P twitterdj.http

69

Total

1735
1613
813
569
201
30
122
110
12

Pean

29.914
32.918
50812
3l.b1ll
25.125%
4. 286
13.556
15.714
&

41.206
43423
57.857
33.705%
29.464
3.01
158.963
20.599
4

Std. Dev. | Maximum

235
235
235
140
100
11
56
56
10

Basic Class Metrics

Number of methods per class
Number of static methods per class
Number of attributes(fields) per class
Number of static attributes per class

Number of parameters per method

70

Twitter4j) Example

Metric

¥ MNumber of Methods (avg/max per type)

¥ java

B twitterd|

P twitterdj.org.json
B twitterdj.http

P twitterdj.examples

> java

¥ Number of Parameters (avg/max per method)

¥ java

B twitterd

P twitterdj.http

» twitterdj.org.json
P twitterdj.examples

> java

71

Total |

f42
641
398
151
90
2
101

Mean | S5td. Dev. Maximum |

12.793
13.082
22.111
9.438
11.25
0.286
11.222

0.954
1.033
1.017

0.97
1.104
0.8589
0.412

21.461
22.274
29.04
16.948
14481
0.7
16.253

0.901
0.918
0.999
1.039
0.652
0.314
0.512

111
111
111
55
49
2
52

= = J O T T "

Nested Block Depth

The depth of nested blocks of code

Depth = 2

public static JSONODbject toJSONODbject(String string) throws JSONEXxception {

JSONODbject o = new JSONODbject();
JSONTokener x = new JSONTokener(string);

while (x.more()) {
String name = Cookie.unescape(x.nextTo('="));
x.next('=");
o.put(name, Cookie.unescape(x.nextTo(';")));
x.next();

}

return o;

72

Twitter4j) Example

Metric | Total Mean | 5td. Dev. Maximum |

¥ Mested Block Depth {(avg/max per method) 1.489 0.938 8

¥ java 1.549 0.984 8

¥ twitterdj.org.json 2.047 1.348 8

b JSOMNML.java 3.143 2.642 8

XML java 3.833 2672 8

B SOMObject.java 1.581 1.153 6

P CDL.java 2.5 1.5 5

» Cookie.java 3.25 0.829 4

b JSONTokener.java 2375 1.053 d

CookielListjava 3 1 d

P HTTPTokener.java 2.5 1.5 i

P XMLTokener.java 2 857 0.833 d

b JSOMNArray.java 1.58 0.851 4

B JSOMWriter java 1.786 1.013 4

b Testjava 3 0 3

HTTP.java 2.5 0.5 3

b JSOMNException.java 1 0 1

P JSOMNStringer.java 1 0 1
J50ONString.java 0 0

b twitterdj.examples 3 1.054 5

b twitterdj.http 1.465 0.868 5

P twitterd] 1.3 0.619 4

2

P java 1.078 0.2659

73

Some Inheritance Metrics

Depth of Inheritance Tree (DIT)
Distance from class Object in the inheritance hierarchy

Number of Children
Total number of direct subclasses of a class

Number of Overridden Methods (NORM)

Specialization Index
NORM * DIT / number of methods

If greater than 5 likely that superclass abstraction has a problem

74

Lack of Cohesion in Methods (LCOM)

<r>- M|
1-M

M Dbe the set of methods defined by the class

F be the set of fields defined by the class

r(f) be the number of methods that access field f, where f is a member of F
<r> be the mean of r(f) over F.

High Cohesion
When each method accesses all fields

<r>= M
LCOM =0

75

Lack of Cohesion of Methods

Metric Total Mean 5td. Dev. Maximum

¥ Lack of Cohesion of Methods (avg/max per type) 0.26 0.342 0.938
¥ java 0.25 0.336 0.938

B twitterdj.http 0.358 0.348 0.938

B twitterdj 0461 0.359 0.902

P twitterdj.org.json 0.056 0.15% 0.5

P twitterdj.examples 0.024 0.058 0.167

> java 0.319 0.37 0.905%

76

Metrics for Stable Code

Dependencies make code rigid, fragile and difficult to reuse

Copy

/

Read Write
Keyboard Printer

77

Flexible version

Copy

Reader

reader

—

Keyboard
Reader

/8

writer

>| Writer |
Keyboard
Reader

Have dependencies on Reader/Writer classes
But these classes are stable

Main Ildea

When code depends on other classes, changes to those classes
can force the code to change

The fewer classes code depends on the stabler the code is

79

Class Categories

Group of highly cohesive classes that

1. The classes within a category are closed together against any force of change

If one class must change, all classes are likely to change

2. The classes within a category are reused together

3. The classes within a category share some common function or
achieve some common goal

80

Dependency Metrics

Afferent Couplings (Ca)

The number of classes outside this category that depend upon
classes within this category

Efferent Couplings (Ce)

The number of classes inside this category that depend upon classes
outside this category

Instability (1)

Ce
Ca+Ce

| =0 means a category is maximally stable

| = 1 means a category is maximally instable

8l

Instability Twitter4) Example

Metric Total Mean Std. Dev. Maximum

¥ Instability (avg/max per packageFragment) 0.645 0.35 1

¥ java 0.51 0.354 1
twitterdj.examples 1
twitterd 0.538
twitterdj.http 0.5
twitterdj.org.json 0

¥ java 0.917 0.083 1
twitterdj.http 1
twitterd 0.833

82

How to be flexible and stable?

Use abstract classes

83

Abstractness (A)

of abstract classes in category

total # of classes in category

A =1, all classes are abstract

A =0, all classes are concrete

84

Main Sequence

Abstraction
Main Sequence

1,0)

Instability

85

Distance From Main Sequence
Dn=|A+1-1]
Dn = 0, category is on the main sequence

Dn = 1, category is far from main sequence

Values not near zero suggest restructuring the category

86

Twitter4) Example

Metric Total Mean | Std. Dev. Maximum

¥ Normalized Distance (avg/max per packageFragment) 0.327 0.329 0.941

¥ java 0.449 0.337 0.941
twitterdj.org.json 0.941
twitterdj.http 0.5
twitterdj 0.356
twitterdj.examples 0

¥ java 0.083 0.083 0.167
twitterd| 0.167
twitterdj.http 0

87

