3/30/04 Doc 21 Some on Protocol, slide # 1

CS 580 Client-Server Programming
Spring Semester, 2004
Doc 21 Some on Protocol

Contents
Doc 21 Some 0N ProtoCol ...,
Some low level Parsing ..o,
Calendar SYstem.........ccooiviiiiii e
References

Java Network Programming, Harold, O’Reilly, pp 75-116

VisualWorks Internet Client Developer’ Guide, pp 24-48

Copyright ©, All rights reserved. 2004 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

3/30/04 Doc 21 Some on Protocol, slide # 2

Some low level Parsing
Java String methods

"cat;man;ran".split(";");

”» (1 7 (13

Returns an array of String { “cat”, “man”, “ran”);

See
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.ht
mi#sum

for valid arguments of split().

StringTokenizer
parts = new java.util.StringTokenizer("cat,man;ran;,fan", ",;");
while (parts.hasMoreElements())

{
System.out.println(parts.nextToken());

h

Output
cat
man
ran
fan

3/30/04 Doc 21 Some on Protocol, slide # 3
Some Useful Smalltalk Collection Methods
'cat;man;ran' tokensBasedOn: $;
Result
OrderedCollection ('cat' 'man' 'ran')

!

'cat. man... ran.
piecesCutWhere:
[:each :next | each = $. and: [next = Character space]]
do: [:each | Transcript show: each printString; cr]

Result

3/30/04 Doc 21 Some on Protocol, slide # 4
Some Useful Smalltalk Collection Methods

'cat\man\ran'
runsFailing: [:each | each = $\]
do: [:each | Transcript show: each; cr]

Result

cat
man
ran

'cat\man\ran'
runsSatisfying: [:each | each ~= $\]
do: [:each | Transcript show: each; cr]

Result
cat

man
ran

3/30/04 Doc 21 Some on Protocol, slide # 5

Java Streams
Java Streams do not have many methods that aid in parsing
Avoid PrintStream — printin() is platform dependent

“PrintStream is evil and network programmers should avoid it
like the plague”

readLine()
Text claims that readLine() is buggy

Avoid using this method to read data from a socket

Data Input/Output Streams
Are used for binary data
Don’t use unless protocol is binary

If protocol is binary these streams are only good between Java
clients and servers

3/30/04 Doc 21 Some on Protocol, slide # 6
Smalltalk Streams — Some Useful Methods

peek
Answer what would be returned with a self next, without changing position. If the receiver
is at the end, answer nil.

peekFor: anObject

Answer false and do not move the position, if the next object is not anObject, or if the
receiver is at the end. Answer true and increment the position if the next object is
anObiject.

skipToAll: aCollection

Skip forward to the next occurrence (if any) of aCollection. If found, leave the stream
positioned before the occurrence, and answer the receiver; if not found, answer nil, and
leave the stream positioned at the end.

throughAll: aCollection

Answer a subcollection from the current position through the occurrence (if any,
inclusive) of aCollection, and leave the stream positioned after the occurrence. If no
occurrence is found, answer the entire remaining stream contents, and leave the stream
positioned at the end.

upTo: anObject
Answer a subcollection from position to the occurrence (if any, exclusive) of anObject.
The stream is left positioned after anObject. If anObject is not found answer everything.

upToAll: aCollection

Answer a subcollection from the current position up to the occurrence (if any, not
inclusive) of aCollection, and leave the stream positioned before the occurrence. If no
occurrence is found, answer the entire remaining stream contents, and leave the stream
positioned at the end.

skipUpTo: anObject
Skip forward to the occurrence (if any, not inclusive) of anObiject. If not there, answer nil.
Leaves positioned before anObject.

3/30/04 Doc 21 Some on Protocol, slide # 7
upToAll: and Java
upToAll: is a useful method
sdsu.io.ChunkReader

http://www.eli.sdsu.edu/java-
SDSU/docs/sdsu/io/ChunkReader.html

Reads up to a given string in a stream or string

read = new sdsu.i0.ChunkReader("catEOMmatEOM", "EOM")
while (read.hasMoreElements())

{
System.out.println(read.readChunk());
¥
Result
cat

mat

3/30/04 Doc 21 Some on Protocol, slide # 8
Calendar System
Anonymous Users

* View the items in a calendar
* Do searches for particular events

Search on
e Date
e Title
e Location

Registered Users
After login on with user name and password can

* Enter new events
* Modify event they submitted earlier
» Cancel events they submitted earlier

Event
An event has

 ATitle

A start time (day and time)

A duration, which could be all day

A short description

A location, which could be a room in a building, a building or
a general location like Aztec Green

The name of a submitter

3/30/04 Doc 21 Some on Protocol, slide #9
Partial Sample Protocol
Request General Format

requestName CRLF
key1=value1 CRLF
key2=value2 CRLF
EOM CRLF

Sample

login CRLF
user=whitney CRLF
password=foobar CRLF
EOM CRLF

newEvent CRLF

titte=The Emerging Cyberinfrastructure CRLF
start=April 2, 2004 11:00 CRLF

duration=60 CRLF

location=GMCS 327 CRLF

owner=whitney CRLF

EOM CRLF

Some issues are not specified on purpose

3/30/04 Doc 21 Some on Protocol, slide # 10
How to Handle Protocol
CalendarLogonRequest

Represents a Logon request

Can generate valid Calendar logon protocol request string
Can read valid Calendar logon protocol request

3/30/04 Doc 21 Some on Protocol, slide # 11
Java Example

public class CalendarLogonRequest {
private Hashtable data = new Hashtable();

public void userName(String name) { data.put(“‘user”, name); }
public String userName() { return data.get(*‘user”); }

public void password(String password) {
data.put(“password”, password);

h

public String toString() {
StringBuffer logon = new StringBuffer();
logon.append(“login™).
logon.append(“\r\n™).
logon.append(“user="").
logon.append(data.get(“‘user™)).
logon.append(“\r\n™).
logon.append(“password="").
logon.append(data.get(““password”)).
logon.append(“\r\n™).
logon.append(“EOM\r\n).
return logon.toString();

h

public static CalendarLogonRequest from(InputStream in) {
parse in
return CalendarLogonRequest object with username and password
set}

3/30/04 Doc 21 Some on Protocol, slide # 12
Smalltalk Example

Smalltalk defineClass: #CalendarLogonRequest
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'userName password '
classInstanceVariableNames: "
imports: "
category: 'Protocol Examples'

CalendarLogonRequest class methods

from: aStringOrReadStream
Asuper new from: aStringOrReadStream readStream

userName: aNameString password: aPasswordString
Asuper new setUserName: aNameString password: aPasswordString

CalendarLogonRequest Instance methods

setUserName: aNameString password: aPasswordString
userName := aNameString.
password := aPasswordString

from: aReadStream
| message lines |
message := aReadStream upToAll: 'EOM\' withCRs.
lines := message tokensBasedOn: Character cr.

lines do:
[:each | (each includes: $=) ifTrue:[self addPairFrom: each]]

3/30/04 Doc 21 Some on Protocol, slide # 13

addPairFrom: aString
| keyValue |
keyValue := aString tokensBasedOn: $=.
keyValue first asLowercase = 'password'
ifTrue:[password := keyValue last].
keyValue first asLowercase = 'user’
ifTrue:[userName := keyValue last].

asString
| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
AaStream contents

printOn: aStream
aStream

nextPutAll: 'login'; cr;
nextPutAll: 'user=";
nextPutAll: userName; cr;
nextPutAll: 'password=",
nextPutAll: password; cr;
nextPutAll: 'EOM'; cr

password
Apassword

userName
AuserName

3/30/04 Doc 21 Some on Protocol, slide # 14

What is the Point?
Use CalendarLogonRequest to generate logon protocol
logonRequest = new CalendarLogonRequest();
logonRequest.user(“whitney”);

logonRequest.password(“foo™);

clientSocket = new Socket(“127.0.0.1°, 9009);
toServer = clientSocket.getOutputStream();

request = logonRequest.toString();
toServer.write(request.getBytes());

Use CalendarLogonRequest to read protocol on server side

3/30/04 Doc 21 Some on Protocol, slide # 15
Sample Client

clientSocket := SocketAccessor newTCPclientToHost: '127.0.0.1'
port: 9009.

logon := CalendarLogonRequest userName: 'roger' password: 'foo'.
toServer := clientSocket read AppendStream.

toServer lineEndCRLF.

toServer nextPutAll: logon asString;flush.

Sample Server

server := SocketAccessor newTCPserverAtPort: 9009.
server listenFor: 5.

acceptedSocket := server accept.

[| stream |
stream := acceptedSocket read AppendStream.
stream lineEndCRLF.

request := CalendarLogonRequest from: stream.
stream nextPutAll: 'Done'; commit.

stream close.
] forkAt: Processor userSchedulingPriority -1.

3/30/04 Doc 21 Some on Protocol, slide # 16
Second Idea — Command
One the server side let the request actually perform the
operation
public class CalendarLogonRequest {
public Result execute(CalenderHandler aCalender) {

check to see if user name and password are correct
return a result object

3/30/04 Doc 21 Some on Protocol, slide # 17
Third Idea — Protocol Stream

Create a CalendarinputStream

* Read returns a Calendar request object

public void run(int port) throws IOException {
ServerSocket input = new ServerSocket(port);
log.info("Server running on port " + input.getLocalPort());
while (true) {
Socket client = input.accept();
log.info("Request from " + client.getInetAddress());

processRequest(
new CalenderInputStream(client.getInputStream()),
new CalenderOutPutStream(client.getOutputStream());
client.close();

¥
h

void processRequest(
CalenderInputStream in,
CalenderOutPutStream out)
throws IOException {
CalenderRequest request = (CalenderRequest) in.read();
CalenderRequest response = request.execute(calender);
out.write(response);

¥

3/30/04 Doc 21 Some on Protocol, slide # 18
Issue — Which Request?
Socket client = input.accept();
in = client.getInputStream();
String firstLine = in.readLine();
if (firstLine = “login™)
request = new CalendarLoginRequest();
else if (firstLine = “newEvent”)

request = new CalendarNewEventRequest();
else 1f etc.

Can Use Prototype
requests = new Hashtable();
requests.put(“login”, new CalendarLoginRequest());
requests.put(“newEvent”, new CalendarNewEventRequest());
Socket client = input.accept();

in = client.getInputStream();

String firstLine = in.readLine();
request = requests.get(firstLine).clone();

