
1/24/05 Doc 1 Introduction Slide 1 of 17

CS 580 Client-Server Programming
Spring Semester, 2005

Doc 1 Introduction
Contents

Course Introduction... 3
Introduction to Client-Server.. 7

What is Client-Server? .. 7
What Client-Server Requires of a Programmer 9

Programming Issues ... 10
Naming Convention for Classes, Variables & Methods......... 10
Names .. 11
Comments .. 12

Commenting Data Declarations.. 17

Copyright ©, All rights reserved. 2004 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document

1/24/05 Doc 1 Introduction Slide 2 of 17

References

Code Complete by Steve McConnell

1/24/05 Doc 1 Introduction Slide 3 of 17

Course Introduction
Course Outline

Introduction
Testing
Source Version Control
Network Basics
GUI
Client Development Issues
Concurrency
Server Types & Structure
Client-Server Protocols
Logging
Databases
Security
Web based Applications

CGI, Fast-CGI, Servlets
Web Services
Advanced topics

This outline will be changed during the semester.

1/24/05 Doc 1 Introduction Slide 4 of 17

Main Points of Class

Common design issues & solutions for building a server

Issues in designing a client-server network protocol

Handling Concurrency

Accessing databases

Programming issues dealing with working on client-server code

1/24/05 Doc 1 Introduction Slide 5 of 17

Programming languages for the Course

Java

We will be using parts of JDK 1.5

Smalltalk – VisualWorks 7.3

C#

Not supported

1/24/05 Doc 1 Introduction Slide 6 of 17

What does it mean to “Know” Java, C# or Smalltalk

Basic syntax of the language

Core API

 No one knows the entire API of either language

You should have good grasp of the common or core API

Collections, Files, Exceptions, Streams

Language culture - Ways of doing things in each language

• Java Doc
• Searching the API
• Compiling/running code
• Using Smalltalk browsers
• Naming conventions

Object-oriented programming

1/24/05 Doc 1 Introduction Slide 7 of 17

Introduction to Client-Server
What is Client-Server?

User
Interface

Protocol
Interface DataProtocol

Interface

Protocol

Client Server

Client

Application that initiates peer-to-peer communication

Translate user requests into requests for data from server via
protocol

GUI often used to interact with user

Server

Any program that waits for incoming communication requests
from a client

Extracts requested information from data and return to client

Common Issues

• Authentication
• Authorization
• Data Security
• Privacy
• Protection
• Concurrency

1/24/05 Doc 1 Introduction Slide 8 of 17

 What this Course is not

An advanced (or beginning) Networking course

Application
Presentation

Session
Transport
Network
Data Link
Physical

7
6
5
4
3
2
1

OSI Model

Process
Layer

How to use a client builder application/system

Powerbuilder

What this Course covers

Skills & knowledge required to build client-server applications

1/24/05 Doc 1 Introduction Slide 9 of 17

What Client-Server Requires of a Programmer

• Designing robust protocols

• Network programming

• Designing usable computer-human interfaces

• Good documentation skills

• Good debugging skills

• Understand the information flow of the company/customer

• Mastery of concurrency

• Multi-platform development

• Database programming

• Security

1/24/05 Doc 1 Introduction Slide 10 of 17

Programming Issues
Naming Convention for Classes, Variables & Methods

• Use full words – avoid abrvtns

Pascal Casing

Capitalize the first character of each word

SomeClassName

Camel Casing

Capitalize the first character of each word except the first word

someVariableName

Item Java Smalltalk C#
Class PascalCase PascalCase PascalCase
Method camelCase camelCase PascalCase
Field camelCase camelCase CamelCase
Parameter camelCase camelCase camelCase
Local Variable camelCase camelCase camelCase

1/24/05 Doc 1 Introduction Slide 11 of 17

Names

"Finding good names is the hardest part of OO Programming"

"Names should fully and accurately describe the entity the
variable represents"

What role does the variable play in the program?

Data Structure Role, function
InputRec EmployeeData
BitFlag PrinterReady

Some Examples of Names, Good and Bad

TrainVelocity Velt, V, X, Train
CurrentDate CD, Current, C, X, Date
LinesPerPage LPP, Lines, L, X

Names should be as short as possible and still convey meaning
to the reader

1/24/05 Doc 1 Introduction Slide 12 of 17

Comments

"Comments are easier to write poorly than well, and comments
can be more damaging than helpful"

What does this do?

for i := 1 to Num do
 MeetsCriteria[i] := True;
for i := 1 to Num / 2 do begin
 j := i + i;
 while (j <= Num) do begin
 MeetsCriteria[j] := False;
 j := j + i;
 end;
for i := 1 to Mun do
 if MeetsCriteria[i] then
 writeln(i, ' meets criteria ');

1/24/05 Doc 1 Introduction Slide 13 of 17

How many comments does this need?

for PrimeCandidate:= 1 to Num do
IsPrime[PrimeCandidate] := True;

for Factor:= 1 to Num / 2 do begin
FactorableNumber := Factor + Factor ;
while (FactorableNumber <= Num) do begin

IsPrime[FactorableNumber] := False;
FactorableNumber := FactorableNumber + Factor ;

end;
end;

for PrimeCandidate:= 1 to Num do
if IsPrime[PrimeCandidate] then

writeln(PrimeCandidate, ' is Prime ');

Good Programming Style is the Foundation of
Well Commented Program

1/24/05 Doc 1 Introduction Slide 14 of 17

 Commenting Paragraphs of Code

Write comments at the level of the code's intent

Comment the why rather than the how

Make every comment count

Document surprises

Avoid abbreviations

How verses Why

How

/* if allocation flag is zero */
if (AllocFlag == 0) ...

Why

/* if allocating a new member */

if (AllocFlag == 0) ...

Even Better

if (AllocFlag == NEW_MEMBER) ...

1/24/05 Doc 1 Introduction Slide 15 of 17

Summary comment on How

{ check each character in "InputStr" until a
 dollar sign is found or all characters have
 been checked }

Done := false;
MaxPos := Length(InputStr);
i := 1;
while ((not Done) and (i <= MaxLen)) begin

if (InputStr[i] = '$') then
Done := True

else
i := i + 1

end;

Summary comment on Intent

{ find the command-word terminator }

Done := false;
MaxPos := Length(InputStr);
i := 1;

while ((not Done) and (i <= MaxPos)) begin
if (InputStr[i] = '$') then

Done := True
else

i := i + 1
end;

1/24/05 Doc 1 Introduction Slide 16 of 17

Summary comment on Intent with Better Style

{ find the command-word terminator }

FoundTheEnd := false;
MaxCommandLength := Length(InputStr);
Index := 1;

while ((not FoundTheEnd) and
 (Index <= MaxCommandLength)) begin

if (InputStr[Index] = '$') then
FoundTheEnd := True;

else
Index := Index + 1;

end;

1/24/05 Doc 1 Introduction Slide 17 of 17

Commenting Data Declarations

Comment the units of numeric data

Comment the range of allowable numeric values

Comment coded meanings

var
CursorX: 1..MaxCols; { horizontal screen position of cursor }
CursorY: 1..MaxRows; { vertical position of cursor on screen }

AntennaLength: Real; { length of antenna in meters: >= 2 }
SignalStrength: Integer; { strength of signal in kilowatts: >= 1 }

CharCode: 0..255; { ASCII character code }
CharAttib: Integer; { 0=Plain; 1=Italic; 2=Bold }
CharSize: 4..127; { size of character in points }

Comment limitations on input data

Document flags to the bit level

