
2/3/05 Doc 4 Some Parsing & Security slide # 1

CS 580 Client-Server Programming
Spring Semester, 2005

Doc 4 Some Parsing & Security
Contents

Parsing .. 3
Some low level Parsing... 8

Some Security... 16
BitTorrent Overview .. 16
Encryption... 18

RSA.. 23
One-Way Hash Functions... 27

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the
copyright on this document.

2/3/05 Doc 4 Some Parsing & Security slide # 2

References

Java Network Programming, Harold, O’Reilly, pp 67-104

Applied Cryptography Second Edition, Bruce Schneier, John
Wiley & Sons, 1996

VisualWorks Security Guide, pp 17-23

BitTorrent Specification
http://wiki.theory.org/BitTorrentSpecification

Reading

Java Network Programming, Harold, O’Reilly, pp 67-104

BitTorrent Specification
http://wiki.theory.org/BitTorrentSpecification

2/3/05 Doc 4 Some Parsing & Security slide # 3

Parsing

'li2e3:cate'

How to parse the above bencoded string?

Common Parsing Cases

• Fixed length tokens
• Token with size indicated
• Special characters demarking tokens

2/3/05 Doc 4 Some Parsing & Security slide # 4

Fixed-length tokens

Example: Gnutella Message Header

Desciptor
ID

Payload
Descriptor

TTL Hops Payload
Length

Byte
offset

0 15 16 17 18 19 22

• Easy to parse
• Variable length data causes problems

2/3/05 Doc 4 Some Parsing & Security slide # 5

Special Characters Demarking Tokens

li2ei345ee

<h1>A Header</h2>

java=properties
file=example

HTTP/1.1 200 OK
Date: Tue, 05 Sep 2000 19:31:14 GMT
Server: Apache/1.3.9 (Unix) PHP/3.0.12
Last-Modified: Mon, 04 Sep 2000 21:03:56 GMT

Special characters indicate start and/or end of a token

In Bencoding lists, integers & dictionaries use this

2/3/05 Doc 4 Some Parsing & Security slide # 6

Issue

What happens if the token contains the special character?

Example: C-based strings

“One line\nSecond Line\n”

\ indicates the next character is special

How to include the \ character in a string

“One line\\nStill one line”

2/3/05 Doc 4 Some Parsing & Security slide # 7

Token with size indicated

3:cow4:spam

Note that in BEncoding the size is indicated using a special
character

Why doesn’t BEncoding use special character to demark start &
end of a string?

2/3/05 Doc 4 Some Parsing & Security slide # 8

Some low level Parsing
Java String methods

"cat;man;ran".split(";");

Returns an array of String [“cat”, “man”, “ran”];

See
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.ht
ml#sum
for valid arguments of split().

StringTokenizer

parts = new java.util.StringTokenizer("cat,man;ran;,fan", ",;");
while (parts.hasMoreElements())

{
System.out.println(parts.nextToken());
}

Output
cat
man
ran
fan

2/3/05 Doc 4 Some Parsing & Security slide # 9

Some Useful Smalltalk Collection Methods

'cat;man;ran' tokensBasedOn: $;

Result

OrderedCollection ('cat' 'man' 'ran')

'cat. man... ran.'
piecesCutWhere:

[:each :next | each = $. and: [next = Character space]]
do: [:each | Transcript show: each printString; cr]

Result

'cat.'
' man...'
' ran.'

2/3/05 Doc 4 Some Parsing & Security slide # 10

Some Useful Smalltalk Collection Methods

'cat\man\ran'
runsFailing: [:each | each = $\]
do: [:each | Transcript show: each; cr]

Result

cat
man
ran

'cat\man\ran'
runsSatisfying: [:each | each ~= $\]
do: [:each | Transcript show: each; cr]

Result

cat
man
ran

2/3/05 Doc 4 Some Parsing & Security slide # 11

Java Streams

Java Streams do not have many methods that aid in parsing

read()

Avoid PrintStream – println() is platform dependent

“PrintStream is evil and network programmers should avoid it
like the plague”

readLine()

Text claims that readLine() is buggy

Avoid using this method to read data from a socket

Data Input/Output Streams

Are used for binary data

Don’t use unless protocol is binary

If protocol is binary these streams are only good between Java
clients and servers

2/3/05 Doc 4 Some Parsing & Security slide # 12

Smalltalk Streams – Some Useful Methods

peek
Answer what would be returned with a self next, without changing position. If the receiver
is at the end, answer nil.

peekFor: anObject
Answer false and do not move the position, if the next object is not anObject, or if the
receiver is at the end. Answer true and increment the position if the next object is
anObject.

skipToAll: aCollection
Skip forward to the next occurrence (if any) of aCollection. If found, leave the stream
positioned before the occurrence, and answer the receiver; if not found, answer nil, and
leave the stream positioned at the end.

throughAll: aCollection
Answer a subcollection from the current position through the occurrence (if any, inclusive)
of aCollection, and leave the stream positioned after the occurrence. If no occurrence is
found, answer the entire remaining stream contents, and leave the stream positioned at
the end.

upTo: anObject
Answer a subcollection from position to the occurrence (if any, exclusive) of anObject.
The stream is left positioned after anObject. If anObject is not found answer everything.

upToAll: aCollection
Answer a subcollection from the current position up to the occurrence (if any, not
inclusive) of aCollection, and leave the stream positioned before the occurrence. If no
occurrence is found, answer the entire remaining stream contents, and leave the stream
positioned at the end.

skipUpTo: anObject
Skip forward to the occurrence (if any, not inclusive) of anObject. If not there, answer nil.
Leaves positioned before anObject.

next: anInteger
Read the next anInteger elements

2/3/05 Doc 4 Some Parsing & Security slide # 13

upToAll: and Java

upToAll: is a useful method

sdsu.io.ChunkReader

http://www.eli.sdsu.edu/java-
SDSU/docs/sdsu/io/ChunkReader.html

Reads up to a given string in a stream or string

read = new sdsu.io.ChunkReader("catEOMmatEOM", "EOM")
while (read.hasMoreElements())

{
System.out.println(read.readChunk());
}

Result
cat
mat

2/3/05 Doc 4 Some Parsing & Security slide # 14

Regular Expressions

(\+|-)?\d+(\.\d*)?((e|E)(\+|-)?\d+)?

Java & Smalltalk support Regular expressions

Sun Regular Expression Tutorial
http://java.sun.com/docs/books/tutorial/extra/regex/index.ht
ml

See
• java.util.regex package
• java.util.Scanner (JDK 1.5)

VisualWorks
• package Regex11
• Documentation is RxParser class methods

2/3/05 Doc 4 Some Parsing & Security slide # 15

Grammars

<Term> := <Integer> | <List> | <Dictionary> | <String>
<Integer> := i <digit>* e
<List> := l <Term>* e
<digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<Dictionary> := d (<String><Term>)* e
<String> := n:<character>n

<character> := a | b | ...

Compiler Compilers

• Generate Parsers from a grammar
• JavaCC https://javacc.dev.java.net/
• SmaCC http://www.refactory.com/Software/SmaCC/

2/3/05 Doc 4 Some Parsing & Security slide # 16

Some Security

BitTorrent Overview

WebSite
Tracker

Peer

Peer
You

Peer

Peer

Peer

Peer

1

2

3

Step 1
You contact a BitTorrent web site
You get information about a file

Step 2
You contact the BitTorrent Tracker for the file
Tracker provides information about peers with parts of the
file

Step 3
You contact peers for parts of the file

2/3/05 Doc 4 Some Parsing & Security slide # 17

How to prevent a Peer from changing the file?

Some Possibilities

• Encrypt the file
• Provide Hash of the file

2/3/05 Doc 4 Some Parsing & Security slide # 18

Encryption

Two basic types of encryption:

• Shared key encryption

One key both encrypts and decrypts

• Public/Private key encryption

One key encrypts, another decrypts

2/3/05 Doc 4 Some Parsing & Security slide # 19

Public/Private Key Encryption

A public key is something that is well known, i.e. published.

The server will then use its own private key to decrypt the
information.

Basics

Let
• PubKey = public key
• PriKey = private key
• M = message
• F() = encrypt function

Properties of F

F(PubKey, M) is encrypted

F(PriKey, M) is encrypted

F(PubKey, M) is different than F(PriKey, M)

M == F(PubKey, F(PriKey, M))

M == F(PriKey, F(PubKey, M))

Given F(key, M) it is hard to find M without the other key

2/3/05 Doc 4 Some Parsing & Security slide # 20

How to use Public/Private Key Encryption

Keeping a Secret

Alice has a secret, M, to communication to Bob in public

Alice computes secret = F(Bob’sPubKey, M)

Alice sends the result to Bob

Bob computes F(Bob’sPriKey, secret) to get M

It will be hard for anyone else to compute M from secret

2/3/05 Doc 4 Some Parsing & Security slide # 21

Document Authorship Authentication/Digital Signature

Bob has a document, M, that he

• Wants to make public
• Provide proof to everyone that the document came from him

Bob computes Doc = F(Bob’sPrivateKey, M)

Bob publishes Doc & his public Key

Since Bob’s public key, F(Bob’sPubKey, Doc), generates the
message, Alice knows the message came from Bob

2/3/05 Doc 4 Some Parsing & Security slide # 22

Common Public/Private Key Encryption Algorithms

RSA (Rivist, Shamir, Adleman)
DSA (Digital Signature Algorithm)

Java & VisualWorks implement these algorithms

2/3/05 Doc 4 Some Parsing & Security slide # 23

RSA

Public Key

Key contains n & e where

n = p*q, p & q are primes
e relatively prime to (p-1)*(q-1)

p & q must be kept secret

Private Key

Key contains n & d

d = e-1 mod ((p-1)*(q-1))

Encrypting

Let m be a message such that m < n

Let c be the encrypted message

c = me mod n

If m >= n then break into block smaller than n and encrypt each
block

Decrypting

m = cd mod n

2/3/05 Doc 4 Some Parsing & Security slide # 24

Example

Example is from page 467-8 of Schneier

Alice’s Keys
Let

p = 47.
q = 71.

Then n = p*q = 3337

e = 79.

Then d = 79-1 mod 3220 = 1019

So Alice’s public key is

n = 3337
e = 79

Alice’s private key is

d = 1019

2/3/05 Doc 4 Some Parsing & Security slide # 25

Sending a Message to Alice

Let m = 41

To send the message to Alice we compute

c = me mod n = 4179 mod 3337 = 875

We send 875 to Alice

Alice computes

cd mode n = 8571019 mod 3337 = 41

2/3/05 Doc 4 Some Parsing & Security slide # 26

Why Wont Public key Algorithms work for BitTorrent?

2/3/05 Doc 4 Some Parsing & Security slide # 27

One-Way Hash Functions

Let M be a message (sequence of bytes)

A one-way hash function f() such that:

• f maps arrays of bytes to arrays of bytes
• f(M) is always the same length
• Given an M it is easy to compute f(M)
• Given f(M) it is hard to compute M
• Given M it is hard to find N such that f(M) = f(N)

Common One-way Hash Functions

MD5 - Message Digest 5
SHA - Secure Hash Algorithm

2/3/05 Doc 4 Some Parsing & Security slide # 28

Validating Contents of a Message

Alice has a message, M, for Bob

Alice via secure channels sends f(M) to Bob

Alice give M to Trent

Trent delivers M1 to Bob

Bob computes f(M1) and compares it to value from Alice

If f(M1) = f(M) Trent did not modify the message

2/3/05 Doc 4 Some Parsing & Security slide # 29

Using MD5 & SHA in Java

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class SampleCode
{
public static void main(String args[])

throws NoSuchAlgorithmException
{
MessageDigest sha = MessageDigest.getInstance("SHA");
sha.update("Hi mom".getBytes());
byte[] shaHash = sha.digest();
System.out.println(new String(shaHash));

MessageDigest md5 = MessageDigest.getInstance("MD5");
md5.update("Hi mom".getBytes());
byte[] md5Hash = md5.digest();
System.out.println(new String(md5Hash));
}

}

2/3/05 Doc 4 Some Parsing & Security slide # 30

Using MD5 & SHA in Smalltalk

Load the MD5 & SHA parcels & in workspace do

MD5 hash: 'Hi mom'
#[114 83 12 28 50 54 225 209 32 37 154 83 76 243 148 235]

SHA hash: ‘Hi mom’
#[98 21 61 218 186 198 119 88 241 144 60 211 87 250 5 236 219
187 235 16]

Convenience method

(SHA hash: 'Hi mom') asHexString
'62153DDABAC67758F1903CD357FA05ECDBBBEB10'

