
CS 580 Client-Server Programming
Spring Semester, 2005

Doc 18 SQL, Joins & Normalization
Contents

...Some Data Modeling! 2
...An Example! 4

..Primary Key! 4
...Indices! 5

...Adding Values ! 6
...Office_Hours adding ! 8
...Getting Office Hours ! 9

..Normalization! 17
...First Normal Form (1NF) ! 17

..Second Normal Form (2NF)! 19
..Third Normal Form (3NF)! 24

...Other Normal Forms! 25

References

Oracle Design, Ensor & Stevenson, O'Reilly & Associates, Inc.,
1997

MySQL On-line Manual http://www.mysql.com/doc/en/Reference.html

PostgreSQL Commands http://www.postgresql.org/idocs/
index.php?sql-commands.html

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on this document.

4/21/05� Doc 18 SQL, Joins & Normalization slide # 1

Some Data Modeling
Terms

Entity
A distinct class of things about which something is known

Entity Occurrence
Particular instance of an entity class

In a database entity occurrences are records in a table

Attribute
An abstraction belonging to or characteristic of an entity

Primary Key (unique identifier)
An attribute (or set of attributes) that uniquely define an entity

Relationship
An abstraction belonging to or characteristic of two entities or
parts together

Relational databases do not support pointers to entities

Foreign Key
A unique identifier in a record representing another record

4/21/05� Doc 18 SQL, Joins & Normalization slide # 2

Entity Relationship Diagram (ERD)

Car

Serial Number
Make
Model
Color

Entity (car) with:
Attributes (Color, make, model, serial number)
Primary key (serial number)

Car Person

Relationship between Car and Person entities
Car must have one and only one owner
Person may own zero, one or more cars
Person can own many cars

Optional

Mandatory

One

Many

Key

4/21/05� Doc 18 SQL, Joins & Normalization slide # 3

An Example
Primary Key

A primary key is one that uniquely identifies a row in a table

A Silly Table

name faculty_id
Whitney 1
Beck 2
Anantha 3

PostgreSQL Version
CREATE TABLE faculty (
 name CHAR(20) NOT NULL,
 faculty_id SERIAL PRIMARY KEY
);

MySQL Version
CREATE TABLE faculty (
 name CHAR(20) NOT NULL,
 faculty_id INTEGER AUTO_INCREMENT PRIMARY KEY
);

4/21/05� Doc 18 SQL, Joins & Normalization slide # 4

Indices

Indices make accessing faster

Primary keys automatically have an index

The CREATE INDEX command creates indices

CREATE INDEX faculty_name_key on faculty (name);

4/21/05� Doc 18 SQL, Joins & Normalization slide # 5

Adding Values

INSERT INTO faculty (name) VALUES ('Whitney');
INSERT INTO faculty (name) VALUES ('Beck');
INSERT INTO faculty (name) VALUES ('Anantha');
INSERT INTO faculty (name) VALUES ('Vinge');

select * from faculty;

Result
 name | faculty_id
----------------------+-------------
 Whitney | 1
 Beck | 2
 Anantha | 3
 Vinge | 4
(4 rows)

Note PostgreSQL allows one to drop the list of column names:

INSERT INTO faculty VALUES ('Vinge');

4/21/05� Doc 18 SQL, Joins & Normalization slide # 6

A Second Table
PostgreSQL

CREATE TABLE office_hours (
 start_time TIME NOT NULL,
 end_time TIME NOT NULL,
 day CHAR(3) NOT NULL,
 faculty_id INTEGER REFERENCES faculty,
 office_hour_id SERIAL PRIMARY KEY
);

MySQL
CREATE TABLE office_hours (
 start_time TIME NOT NULL,
 end_time TIME NOT NULL,
 day CHAR(3) NOT NULL,
 faculty_id INTEGER REFERENCES faculty,
 office_hour_id INTEGER AUTO_INCREMENT PRIMARY KEY
);

faculty_id is a foreign key

REFERENCES faculty insures that only valid references are
made

start_time end_time day faculty_id office_hour_id
10:00 11:00 Wed 1 1
8:00 12:00 Mon 2 2
17:00 18:30 Tue 1 3
9:00 10:30 Tue 3 4
9:00 10:30 Thu 3 5
15:00 16:00 Fri 1 6

4/21/05� Doc 18 SQL, Joins & Normalization slide # 7

Office_Hours adding
Simple Insert

INSERT
 INTO office_hours (start_time, end_time, day, faculty_id)
 VALUES ('10:00:00', '11:00:00' , 'Wed', 1);

The problem is that we need to know the id for the faculty

Using Select

INSERT INTO
 office_hours (start_time, end_time, day, faculty_id)
SELECT
 '8:00:00' AS start_time,
 '12:00:00' AS end_time,
 'Mon' AS day,
 faculty_id AS faculty_id
FROM
 faculty
WHERE
 name = 'Beck';

4/21/05� Doc 18 SQL, Joins & Normalization slide # 8

Getting Office Hours

SELECT
 name, start_time, end_time, day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id;

name start_time end_time day
Whitney 10:00:00 11:00:00 Wed
Beck 08:00:00 12:00:00 Mon
Whitney 17:00:00 18:30:00 Tue
Whitney 15:00:00 16:00:00 Fri
Anantha 09:00:00 10:30:00 Tue
Anantha 09:00:00 10:30:00 Thu

4/21/05� Doc 18 SQL, Joins & Normalization slide # 9

Some Formatting
PostgreSQL only

SELECT
 name AS Instructor,
 TEXT(start_time) || ' to ' || TEXT(end_time) AS Time,
 day AS Day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id
ORDER BY
 Name;

Instructor Time Day
Anantha 09:00:00 to 10:30:00 Tue
Anantha 09:00:00 to 10:30:00 Thu
Beck 08:00:00 to 12:00:00 Mon
Whitney 10:00:00 to 11:00:00 Wed
Whitney 17:00:00 to 18:30:00 Tue
Whitney 15:00:00 to 16:00:00 Fri

4/21/05� Doc 18 SQL, Joins & Normalization slide # 10

Some Selection

SELECT
 name, start_time, end_time, day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id
 AND
 start_time > '09:00:00'
 AND
 end_time < '16:30:00'
ORDER BY
 Name;

name start_time end_time day
Whitney 10:00:00 11:00:00 Wed
Whitney 15:00:00 16:00:00 Fri

4/21/05� Doc 18 SQL, Joins & Normalization slide # 11

Joins

People
id first_name last_name
1 Roger Whitney
2 Leland Beck
3 Carl Eckberg

Email_Addresses
id user_name host person_id
1 beck cs.sdsu.edu 2
2 whitney cs.sdsu.edu 1
3 whitney rohan.sdsu.edu 1
4 foo rohan.sdsu.edu

The tables have a column in common as
email_addresses.person_id refers to people.id. So we can create
a new table by joining the two tables together on that column

4/21/05� Doc 18 SQL, Joins & Normalization slide # 12

Inner Join (or just Join)

Only uses entries linked in two tables

first_name last_name user_name host
Leland Beck beck cs.sdsu.edu
Roger Whitney whitney cs.sdsu.edu
Roger Whitney whitney rohan.sdsu.edu

select
 first_name, last_name, user_name, host
from
 people, email_addresses
where
 people.id = email_addresses.person_id;

or equivalently

select
 first_name, last_name, user_name, host
from
 people inner join email_addresses
on
 (people.id = email_addresses.person_id);

4/21/05� Doc 18 SQL, Joins & Normalization slide # 13

Outer Join

Uses all entries from a table

Left Outer Join

Use all entries from the left table

first_name last_name user_name host
Leland Beck beck cs.sdsu.edu
Roger Whitney whitney cs.sdsu.edu
Roger Whitney whitney rohan.sdsu.edu
Carl Eckberg

select
 first_name, last_name, user_name, host
from
 people left outer join email_addresses
on
 (people.id = email_addresses.person_id);

4/21/05� Doc 18 SQL, Joins & Normalization slide # 14

Right Outer Join

first_name last_name user_name host
Leland Beck beck cs.sdsu.edu
Roger Whitney whitney cs.sdsu.edu
Roger Whitney whitney rohan.sdsu.edu

foo rohan.sdsu.edu

Use all entries from the right table

select
 first_name, last_name, user_name, host
from
 people right outer join email_addresses
on
 (people.id = email_addresses.person_id);

4/21/05� Doc 18 SQL, Joins & Normalization slide # 15

A right outer join B & B left outer join A

The following two statements are equivalent

select
 first_name, last_name, user_name, host
from
 people right outer join email_addresses
on
 (people.id = email_addresses.person_id);

select
 first_name, last_name, user_name, host
from
 email_addresses left outer join people
on
 (people.id = email_addresses.person_id);

4/21/05� Doc 18 SQL, Joins & Normalization slide # 16

Normalization

Defined by Dr. E. F. Codd in 1970

Normal forms
Reduce redundant data and inconsistencies

First Normal Form (1NF)

An entity is in the first normal form when all its attributes are
single valued

Example - Office Hours

Name OfficeHour1 OfficeHour2 OfficeHour3
Whitney 10:00-11:00 W 17:00-18:30 Tu 15:00-16:00 Fri
Beck 8:00-12:00 M
Anantha 9:00-10:30 Tu 9:00-10:30 Thu

What if someone has more than 3 office hours?
Wasted space for those that have fewer office hours

Not is 1NF since office hours are repeated

4/21/05� Doc 18 SQL, Joins & Normalization slide # 17

In 1NF Form

Faculty
name faculty_id
Whitney 1
Beck 2
Anantha 3

Office Hours
start_time end_time day faculty_id office_hour_id
10:00 11:00 Wed 1 1
8:00 12:00 Mon 2 2
17:00 18:30 Tue 1 3
9:00 10:30 Tue 3 4
9:00 10:30 Thu 3 5
15:00 16:00 Fri 1 6

4/21/05� Doc 18 SQL, Joins & Normalization slide # 18

Second Normal Form (2NF)

An entity is in the second normal form if:

• It is in 1NF and
• All non-key attributes must be fully dependent on the entire

primary key

Example 1- CDs

Put your collection of CD in a database

cd_title artist music_type cd_id
Songs from the
Trilogy

Glass Modern
Classical

1

I Stoten Falu
Spelmanslag

Swedish 2

Photographer Glass Modern
Classical

3

etc.

Table is not in 2NF since different CDs

• Can have the same artists
• Can have same music type

4/21/05� Doc 18 SQL, Joins & Normalization slide # 19

Example 2- Course Schedule

Name Time Days Term Schedule
Number

CS635 1700-1815 MW Spring01 09461
CS651 1700-1815 MW Spring01 09472
CS672 1700-1815 MW Spring01 09483
CS683 1830-1945 MW Spring01 09494
CS696 1530-1645 MW Spring01 09505
CS696 1830-1945 MW Spring01 09516
CS696 1530-1645 TTh Spring01 09520

At SDSU the schedule number uniquely identifies a course in a
semester

So the term and schedule number uniquely identifies a course at
SDSU

We can use term and schedule as the primary key

The table is in 1NF but not 2NF

Name, Time and Days are not fully dependent on the primary key

4/21/05� Doc 18 SQL, Joins & Normalization slide # 20

Schedule
course_id time_id term_id schedule_number

1 1 2 09461

2 1 2 09472

3 1 2 09483

4 2 2 09494

Courses
course title name_id
CS635 Adv Obj Orient Dsgn Prog 1
CS651 Adv Multimedia Systems 2
CS672 Micro Computer Software 3
CS683 Emerging Technologies 4
CS696 Intell Systems & Control 5
CS696 Writing Device Drivers 6
CS696 Sem: Computer Security 7

Time
start_time end_time days time_id
17:00:00 18:15:00 MW 1
18:30:00 19:45:00 MW 2
15:30:00 16:45:00 MW 3
15:30:00 16:45:00 TTh 4
Etc.

4/21/05� Doc 18 SQL, Joins & Normalization slide # 21

Term
semester year term_id
Fall 2000 1
Spring 2001 2

4/21/05� Doc 18 SQL, Joins & Normalization slide # 22

Comments about Previous Slide

The schedule table is now in 2NF

What about the other tables?

If not how would you fix them?

Can you find a better way to decompose the original table?

4/21/05� Doc 18 SQL, Joins & Normalization slide # 23

Third Normal Form (3NF)

An entity is in third normal form if

• It is in 2NF and
• All non-key attributes must only be dependent on the primary

key

Customer
Name Address City State

Name
State
abbreviation

zip id

State abbreviation depends on State Name

Table is not in 3NF

4/21/05� Doc 18 SQL, Joins & Normalization slide # 24

Other Normal Forms

• Boyce-Codd normal form (BCNF)
• Fourth normal form (4NF)
• Fifth normal form (5NF)

These are beyond the scope of this course

See your local database course/textbook

4/21/05� Doc 18 SQL, Joins & Normalization slide # 25

