
February 23, 2005 Doc 17, Threads part 2 slide # 1

 CS 580 Client-Server Programming
Spring Semester, 2005
Doc 10 Threads part 2

Contents
Thread Control ...3

Java interrupt ()..3
Safety - Mutual Access ..10

Java Safety - Synchronize...11
Synchronized Instance Methods ...11
Synchronized Static Methods..12
Synchronized and Inheritance...15
wait and notify Methods in Object16

Some Thread Issues & Ideas...23
Passing Data – Multiple Thread Access................................23

Pass copies...24
Immutable Objects ..25

Background Operations...26
Futures ..27
Callbacks...29

Copyright ©, All rights reserved.2005 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent
(http://www.opencontent.org/opl.shtml) license defines the copyright on this
document.

February 23, 2005 Doc 17, Threads part 2 slide # 2

References

Cancellable Activities, Doug Lea, October 1998,
http://gee.cs.oswego.edu/dl/cpj/cancel.html

Concurrent Programming in Java: Design Principles and
Patterns, Doug Lea, Addison-Wesley, 1997

The Java Programming Language, 2nd Ed. Arnold & Gosling,
Addison-Wesley, 1998

Java's Atomic Assignment, Art Jolin, Java Report, August 1998,
pp 27-36.

Java 1.4.2 on-line documentation
http://java.sun.com/j2se/1.4.2/docs/api/overview-summary.html

Java Network Programming 2nd Ed., Harold, O'Reilly, Chapter
5

Reading

Java Network Programming, 3nd Ed., Harold, Chapter 5.
(Java)

February 23, 2005 Doc 17, Threads part 2 slide # 3

 Thread Control
Java interrupt ()

Sent to a thread to interrupt it

A thread has interrupted status flag

JDK 1.4 Doc state

InterruptedException is thrown if thread is blocked a call to:
• wait
• join
• sleep
and the interrupted status flag is cleared

ClosedByInterruptException is thrown if the thread is blocked
• I/O operation on an interruptible channel
and the interrupted status flag is set

Interruptible channels are part of JDK 1.4 NIO package

If the thread is blocked by a selector:
• Interrupt status is set
• The thread returns from the selector call as normal

If none of the other conditions hold then the thread’s interrupt
status is set

February 23, 2005 Doc 17, Threads part 2 slide # 4

Interrupt and Pre JDK 1.4 NIO operations

If a thread is blocked on a read/write to a:
• Stream
• Reader/Writer
• Pre-JDK 1.4 style socket read/write

The interrupt does not interrupt the read/write operation!

The threads interrupt flag is set

Until the IO is complete the interrupt has no effect

This is one motivation for the NIO package

February 23, 2005 Doc 17, Threads part 2 slide # 5

Interrupt does not stop a Thread

The following program does not end
The interrupt just sets the interrupt flag!

public class NoInterruptThread extends Thread {
public void run() {

while (true) {
System.out.println("From: " + getName());

}
}

public static void main(String args[]) throws InterruptedException{

NoInterruptThread focused = new NoInterruptThread();
focused.setPriority(2);
focused.start();
Thread.currentThread().sleep(5); // Let other thread run
focused.interrupt();
System.out.println("End of main");

}
}

Output
From: Thread-0 (repeated many times)
End of main
From: Thread-0 (repeated until program is killed)

February 23, 2005 Doc 17, Threads part 2 slide # 6

Using Thread.interrupted

This example uses the test Thread.interrupted() to allow the thread to be
continue execution later.

public class RepeatableNiceThread extends Thread {
public void run() {

while (true) {
while (!Thread.interrupted())

System.out.println("From: " + getName());

System.out.println("Clean up operations");
}

}

public static void main(String args[]) throws InterruptedException{

RepeatableNiceThread missManners =
new RepeatableNiceThread();

missManners.setPriority(2);
missManners.start();

Thread.currentThread().sleep(5);
missManners.interrupt();
}

}
Output

From: Thread-0
Clean up operations
From: Thread-0
From: Thread-0 (repeated)

February 23, 2005 Doc 17, Threads part 2 slide # 7

Interrupt and sleep, join & wait

Let thread A be in the not runnable state due to being sent either the sleep(),
join() or wait() methods. Then if thread A is sent the interrupt() method, it is
moved to the runnable state and InterruptedException is raised in thread A.

In the example below, NiceThread puts itself to sleep. While asleep it is sent the
interrupt() method. The code then executes the catch block.

public class NiceThread extends Thread {
public void run() {

try {
System.out.println("Thread started");
while (!isInterrupted()) {

sleep(5);
System.out.println("From: " + getName());

}
System.out.println("Clean up operations");

} catch (InterruptedException interrupted) {
System.out.println("In catch");

}
}

public static void main(String args[]) {
NiceThread missManners = new NiceThread();
missManners.setPriority(6);
missManners.start();
missManners.interrupt();

}
}

Output
Thread started
From: Thread-0
From: Thread-0
In catch

February 23, 2005 Doc 17, Threads part 2 slide # 8

Who Sends sleep() is Important

Since main sends the sleep method, not the thread itself, the
InterruptedException is not thrown.

public class WhoSendsSleep extends Thread {
public void run() {

try {
while (!isInterrupted()) {

System.out.println("From: " + getName());
}
System.out.println("Clean up operations");

} catch (Exception interrupted) {
System.out.println("In catch");

}
}

public static void main(String args[]) {
try {

NiceThread missManners = new NiceThread();
missManners.setPriority(1);
missManners.start();
missManners.sleep(50); //Which thread is sleeping?
missManners.interrupt();

} catch (InterruptedException interrupted) {
System.out.println("Caught napping");

}
}

}
Output

Thread started
From: Thread-0
From: Thread-0
Clean up operations

February 23, 2005 Doc 17, Threads part 2 slide # 9

Threads & Method Sends

A method is executed in the thread that sends the method

missManners.sleep(50);

Put the current thread to sleep not the missManners thread

February 23, 2005 Doc 17, Threads part 2 slide # 10

 Safety - Mutual Access

With multiprocessing we need to address mutual access by different threads.
When two or more threads simultaneously access the same data there may be
problems.

Some types of access are safe. If a method accesses just local data, then
multiple threads can safely call the method on the same object. Assignment
statements of all types, except long and double, are atomic. That is a thread can
not be interrupted by another thread while performing an atomic operation.

February 23, 2005 Doc 17, Threads part 2 slide # 11

Java Safety - Synchronize

Synchronize is Java's mechanism to insure that only one thread at a time will
access a piece of code. We can synchronize methods and block's of code
(synchronize statements).

Synchronized Instance Methods
When a thread executes a synchronized instance method on an object, that
object is locked. The object is locked until the method ends. No other thread can
execute any synchronized instance method on that object until the lock is
released. The thread that has the lock can execute multiple synchronized
methods on the same object. The synchronization is on a per object bases. If
you have two objects, then different threads can simultaneously execute
synchronized methods on different objects. Unsynchronized methods can be
executed on a locked object by any thread at any time. The JVM insures that
only one thread can obtain a lock on an object at a time.

class SynchronizeExample {
int[] data;

public String toString() {
return "array length " + data.length + " array values " + data[0];

}

public synchronized void initialize(int size, int startValue){
data = new int[size];
for (int index = 0; index < size; index++)

data[index] = (int) Math.sin(index * startValue);
}

public void unSafeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)

data[index] = (int) Math.sin(index * newValue);
}

public synchronized void safeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)

data[index] = (int) Math.sin(index * newValue);
}

}

February 23, 2005 Doc 17, Threads part 2 slide # 12

Synchronized Static Methods

A synchronized static method creates a lock on the class, not the object. When
one thread has a lock on the class, no other thread can execute any
synchronized static method of that class. Other threads can execute
synchronized instance methods on objects of that class.

class SynchronizeStaticExample {
int[] data;
static int[] classData;

public synchronized void initialize(int size, int startValue){
data = new int[size];
for (int index = 0; index < size; index++)

data[index] = (int) Math.sin(index * startValue);
}

public synchronized void initializeStatic(int size, int startValue){
classData = new int[size];
for (int index = 0; index < size; index++)

classData[index] = (int) Math.sin(index * startValue);
}

}

February 23, 2005 Doc 17, Threads part 2 slide # 13

Synchronized Statements

A block of code can be synchronized. The basic syntax is:

synchronized (expr) {
statements

}

The expr must evaluate to an object. This will lock the object. The lock is
released when the thread finishes the block. Until the lock is released, no other
thread can enter any method or synchronized block that is locked by the given
object.

A synchronized method is syntactic sugar for a synchronized
block.

class LockTest {
public synchronized void enter() {

System.out.println("In enter");
}

}

Is the same as:

class LockTest {
public void enter() {

synchronized (this) {
System.out.println("In enter");

}
}

}

February 23, 2005 Doc 17, Threads part 2 slide # 14

Lock for Block and Method
This example shows that a lock on an object also locks all access to the object
via synchronized methods.

public class LockExample extends Thread {
private Lock myLock;

public LockExample(Lock aLock) {
myLock = aLock;

}
public void run() {

System.out.println("Start run");
myLock.enter();
System.out.println("End run");

}
public static void main(String args[]) throws Exception {

Lock aLock = new Lock();
LockExample tester = new LockExample(aLock);

synchronized (aLock) {
System.out.println("In Block");

 tester.start();
System.out.println("Before sleep");
Thread.currentThread().sleep(5000);
System.out.println("End Block");

}
}

}

class Lock {
public synchronized void enter() {

System.out.println("In enter");
}

}
Output

In Block
Start run
Before sleep
End Block
In enter
End run (why does this come at the end?)

February 23, 2005 Doc 17, Threads part 2 slide # 15

Synchronized and Inheritance
If you want a method in a subclass to be synchronized you must declare it to be
synchronized.

class Top
{
public void synchronized left()

{
// do stuff
}

public void synchronized right()
{
// do stuff
}

}

class Bottom extends Top
{
public void left()

{
// not synchronized
}

public void right()
{
// do stuff not synchronized
super.right(); // synchronized here
// do stuff not synchronized
}

February 23, 2005 Doc 17, Threads part 2 slide # 16

wait and notify Methods in Object
wait and notify are some of the most useful thread operations.

public final void wait(timeout) throws InterruptedException

Causes a thread to wait until it is notified or the specified
timeout expires.

Parameters:
timeout - the maximum time to wait in milliseconds

Throws: IllegalMonitorStateException
If the current thread is not the owner of the Object's
monitor.

Throws: InterruptedException
Another thread has interrupted this thread.

public final void wait(timeout, nanos) throws InterruptedException
public final void wait() throws InterruptedException

public final void notify()
public final void notifyAll()

Notifies all of the threads waiting for a condition to change.
Threads that are waiting are generally waiting for another
thread to change some condition. Thus, the thread
effecting a change that more than one thread is waiting for
notifies all the waiting threads using the method notifyAll().
Threads that want to wait for a condition to change before
proceeding can call wait(). The method notifyAll() can only
be called from within a synchronized method.

February 23, 2005 Doc 17, Threads part 2 slide # 17

wait - How to use

The thread waiting for a condition should look like:

synchronized void waitingMethod()
{
while (! condition)
wait();

Now do what you need to do when condition is true
}

Note

Everything is executed in a synchronized method

The test condition is in loop not in an if statement

The wait suspends the thread it atomically releases the lock on
the object

February 23, 2005 Doc 17, Threads part 2 slide # 18

notify - How to Use

synchronized void changeMethod()
{
Change some value used in a condition test

notify();
}

February 23, 2005 Doc 17, Threads part 2 slide # 19

 wait and notify Example
Over the next five slides is a typical consumer-producer example. Producers
"make" items, which they put into a queue. Consumers remove items from the
queue. What happens when the consumer wishes to remove when the queue is
empty? Using threads, we can have the consumer thread wait until a producer
thread adds items to the queue.

import java.util.ArrayList;

public class SharedQueue {
ArrayList elements = new ArrayList();
public synchronized void append(Object item) {

elements.add(item);
notify();

}

public synchronized Object get() {
try {

while (elements.isEmpty())
wait();

}
catch (InterruptedException threadIsDone) {

return null;
}
return elements.remove(0);

}
}

February 23, 2005 Doc 17, Threads part 2 slide # 20

wait and notify - Producer

public class Producer extends Thread
{
SharedQueue factory;
int workSpeed;

public Producer(String name, SharedQueue output, int speed)
{
setName(name);
factory = output;
workSpeed = speed;
}

public void run()
{
try

{
int product = 0;
while (true) // work forever

{
System.out.println(getName() + " produced " + product);
factory.append(getName() + String.valueOf(product));
product++;
sleep(workSpeed);
}

}
catch (InterruptedException WorkedToDeath)

{
return;
}

}
}

February 23, 2005 Doc 17, Threads part 2 slide # 21

wait and notify - Consumer

class Consumer extends Thread
{
Queue localMall;
int sleepDuration;

public Consumer(String name, Queue input, int speed)
{
setName(name);
localMall = input;
sleepDuration = speed;
}

public void run()
{
try

{
while (true) // Shop until you drop

{
System.out.println(getName() + " got " +

localMall.get());
sleep(sleepDuration);
}

}
catch (InterruptedException endOfCreditCard)

{
return;
}

}
}

February 23, 2005 Doc 17, Threads part 2 slide # 22

wait and notify - Driver Program

public class ProducerConsumerExample
{
public static void main(String args[]) throws Exception

{
SharedQueue wallmart = new SharedQueue();
Producer nike = new Producer("Nike", wallmart, 500);
Producer honda = new Producer("Honda", wallmart, 1200);
Consumer valleyGirl = new Consumer("Sue", wallmart, 400);
Consumer valleyBoy = new Consumer("Bob", wallmart, 900);
Consumer dink = new Consumer("Sam", wallmart, 2200);
nike.start();
honda.start();
valleyGirl.start();
valleyBoy.start();
dink.start();
}

}

Output

Nike produced 0 Sue got Nike3 Honda produced 3
Honda produced 0 Nike produced 4 Bob got Honda3
Sue got Nike0 Sue got Nike4 Nike produced 8
Bob got Honda0 Honda produced Sue got Nike8
Nike produced 1 Bob got Honda2 Nike produced 9
Sam got Nike1 Nike produced 5 Sue got Nike9
Nike produced 2 Sue got Nike5 Honda produced 4
Sue got Nike2 Nike produced 6 Bob got Honda4
Honda produced 1 Sam got Nike6 Nike produced 10
Bob got Honda1 Nike produced 7 Sue got Nike10
Nike produced 3 Sue got Nike7 Nike produced 11

February 23, 2005 Doc 17, Threads part 2 slide # 23

 Some Thread Issues & Ideas
Passing Data – Multiple Thread Access

Situation

An object is passed between threads

Issue

If multiple threads have a reference to the same object

When one thread changes the object the change is global

Example

anObject = anotherThreadObject.getFoo(); // line A
System.out.println(anObject); // line B

If multiple threads have access to anObject

The state of anObject can change after line A ends and before
line B starts!

This can cause debugging nightmares

February 23, 2005 Doc 17, Threads part 2 slide # 24

Passing Data – Multiple Thread Access

Possible Solutions

Pass copies

Returning data

pubic foo getFoo() {
return foo.clone();

}

foo
^foo copy

Parameters

anObject.doSomeMunging(bar.clone());

anObject doSomeMunging: bar copy

February 23, 2005 Doc 17, Threads part 2 slide # 25

Passing Data – Multiple Thread Access
Possible Solutions

Immutable Objects

Pass objects that cannot change

Java’s base type and Strings are immutable

February 23, 2005 Doc 17, Threads part 2 slide # 26

Background Operations
Situation

Perform some operation in the background
At same time perform some operations in the foreground
Need to get the result when operation is done

Issue

Don’t make the code sequential

Avoid polling

public class Poll {
public static void main(String args[]) {

TimeConsumingOperation background =
new TimeConsumingOperation();

background.start();

while (!background.isDone()) {
performSomethingElse;

}

Object neededInfo = background.getResult();
}

}

February 23, 2005 Doc 17, Threads part 2 slide # 27

Futures
A future starts a computation in a thread
When you need the result ask the future
You will block if the result is not ready

Smalltalk

Promise class in VisualWorks

| delayedAnswer realAnswer |
delayedAnswer := [aClient perform: ‘computePi’] promise.
Do some other work here
realAnswer := delayedAnswer value

February 23, 2005 Doc 17, Threads part 2 slide # 28

Sample Java Future

class FutureWrapper {
TimeConsumingOperation myOperation;

public FutureWrapper() {
myOperation = new TimeConsumingOperation();
myOperation.start();

}

public Object value() {
try {

myOperation.join();
return myOperation.getResult();

} catch (InterruptedException trouble) {
DoWhatIsCorrectForYourApplication;

}
}

}

public class FutureExample {
public static void main(String args[]) {

FutureWrapper myWorker = new FutureWrapper();

DoSomeStuff;
DoMoreStuff;

x = myWorker.value();
}

}

February 23, 2005 Doc 17, Threads part 2 slide # 29

Callbacks

Have the background thread call a method when it is done

Java Outline
class MasterThread {

public void normalCallback(Object result) {
processResult;

}

public void someMethod() {
compute;
TimeConsumingOperation backGround =

new TimeConsumingOperation(this);

backGround.start();
moreComputation;

}
}

class TimeConsumingOperation extends Thread {
MasterThread master;

public TimeConsumingOperation(MasterThread aMaster) {
master = aMaster;

}

public void run() {
DownLoadSomeData;
PerformSomeComplexStuff;
master.normalCallback(resultOfMyWork);

}
}

}

