4/19/05 Doc 15 Prototype & Builder slide #1
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005
Doc 15 Prototype & Builder

Contents

ProtOtYPe. .. e 3
INteNt.. .o 3
Applicability.......coooeei 3
COPYING ISSUES....ccviiiiii e 3
Shallow Copy Verse Deep Copy.....cccccvveeiviieiiiiieiiiieeeennnee, 5
CloNING ISSUES.....ccveiiieee e 8
CONSEQUENCES.......uuiiiiiieeiie e e eeans 11
Implementation Issues.............ccooiii i, 11
BUIlder..... o, 12
Applicability........coooii 12
Example — XML Parser..........coooiiiiii e, 14
CONSEUUENCES.......ciiiieii e e e e 17

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

4/19/05 Doc 15 Prototype & Builder slide #2

References

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma,
Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 117-126, 97-106

The Design Patterns Smalltalk Companion, Alpert, Brown, Woolf, Addision-
Wesley, 1998, pp. 77-90, 47-62

4/19/05 Doc 15 Prototype & Builder slide #3

Prototype
Intent

Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype

Applicability

Use the Prototype pattern when

A system should be independent of how its products are
created, composed, and represented; and

When the classes to instantiate are specified at run-time; or

To avoid building a class hierarchy of factories that parallels
the class hierarchy of products; or

When instances of a class can have one of only a few
different combinations of state.

It may be easier to have the proper number of prototypes
and clone them rather than instantiating the class
manually each time

4/19/05 Doc 15 Prototype & Builder slide #4
Insurance Example

Insurance agents start with a standard policy and customize it

Two basic strategies:
* Copy the original and edit the copy

* Store only the differences between original and the
customize version in a decorator

4/19/05 Doc 15 Prototype & Builder slide #5

Copying Issues
Shallow Copy Verse Deep Copy

Original Objects

4 aDoor h /m

rooml &~

room2 e——(aRoom | aTable
\size 5)

Shallow Copy

' I
aDoor aRoom

aChair
rooml &7 :
rl:_:n:-nﬂ * | aRoom |

_s1ze 5).
g aDoor) /
rooml o/
roomz

. S1ZE 53,

i

4/19/05 Doc 15 Prototype & Builder slide #6

Shallow Copy Verse Deep Copy

Original Objects

4 aDoor A /ﬁm
rooml &~
room2 e—T—®(aRoom M
\size 5) \J/'
Deep Copy
4 aDoor A /@m
rooml
room2 &—T—"(aRoom |
\size 5 y
4 Door I
aDoo / y
rooml

room2 e—|—%»
\size 5 y

4/19/05 Doc 15 Prototype & Builder slide #7

Shallow Copy Verse Deep Copy

Original Objects

4 aDoor A /ﬁm
rooml &~
room2 e—T—®(aRoom w
\size 5) \J/'
Deeper Copy
‘ aDoor h
1 &7
room
room?2 0——>
(size [5]) 0 =
4 ™\
aDoor /
7
room]l

room?2 0—_> aTable
7 -

_size 5 |)

4/19/05 Doc 15 Prototype & Builder slide #8

Cloning Issues
How to in C++ - Copy Constructors

class Door
{
public:
Door();
Door(const Door&);

virtual Door* clone() const;

virtual void Initialize(Room*, Room*);
/I stuff not shown
private:
Room* room1;
Room* room2;

}

Door::Door (const Door& other) //Copy constructor

{

room1 = other.room1;
room?2 = other.room2;

}

Door* Door::clone() const

{

return new Door(*this);

}

4/19/05 Doc 15 Prototype & Builder slide #9

How to in Java - Object clone()
protected Object clone() throws CloneNotSupportedException
Default is shallow copy
Returns: A clone of this Object.
Throws: OutOfMemoryError

Throws: CloneNotSupportedException

class Door implements Cloneable {
public void Initialize(Room a, Room b)
{ room1 = a; room2 = b; }

public Object clone() throws
CloneNotSupportedException {

/I modify this method for deep copy
// no need to implement this method for shallow copy
return super.clone();

}

Room room1;

Room room2;

}

4/19/05 Doc 15 Prototype & Builder slide #10

VisualWorks Smalitalk

Object>>shallowCopy
Does a shallowCopy of the receiver

Object>>copy
Aself shallowCopy postCopy

“Template method for copy”
Copy is the primary method for copying an object

Classes override postCopy to do more than shallow copyDoor

Smalltalk.CS635 defineClass: #Door
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'room1 room2 "'

postCopy
room1 :=room1 copy.
room2 := room2 copy.

4/19/05 Doc 15 Prototype & Builder slide #11
Consequences

* Adding and removing products at run-time

* Specifying new objects by varying values

* Specifying new objects by varying structure

* Reducing subclassing (from factory method)

* Configuring an application with classes dynamically

Implementation Issues
* Using a prototype manager
* Implementing the Clone operation

* Initializing clones

4/19/05 Doc 15 Prototype & Builder slide #12

Builder
Intent

Separate the construction of a complex object from its

representation so that the same construction process can
create different representations

Applicability
Use the Builder pattern when
* The algorithm for creating a complex object should be
independent of the parts that make up the object and how

they're assembled

* The construction process must allow different
representations for the object that's constructed

4/19/05 Doc 15 Prototype & Builder slide #13

Collaborations

The client creates the Director object and configures it with
the desired Builder object

Director notifies the builder whenever a part of the product
should be built

Builder handles requests from the director and adds parts to
the product

The client retrieves the product from the builder

aClient aDirector aConcreteBulder
|
l new ConcreteBulder |

new Director{ aBwlder) |

__________ .-

Add(aLineShape) I Buil dPartA()

BuildPartB()

BuildPart(X)

(retResult

_|
Y
—

4/19/05 Doc 15 Prototype & Builder slide #14

Example — XML Parser

Director
XML Parser

Abstract Builder Class
XML.SAXDriver (Smalltalk)

org.xml.sax.helpers.DefaultHandler (Java)
DefaultHandler (C++)

Concrete Builder Class
Your subclass of the abstract builder

Client
Your code that uses the tree built

4/19/05 Doc 15 Prototype & Builder slide #15

Java Example

public static void main(String argv[])

{
SAXDriverExample handler = new SAXDriverExample();

I/l Use the default (non-validating) parser
SAXParserFactory factory = SAXParserFactory.newlnstance();
try
{
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(new File("sample"), handler);

}
catch (Throwable t)

{
t.printStackTrace();

}

System.out.printin(handler.root());

}

4/19/05 Doc 15 Prototype & Builder slide #16

Smalltalk Example

| builder exampleDispatcher |

builder := SAXDriverExample new.
exampleDispatcher := SAXDispatcher new contentHandler: builder.

XMLParser
processDocumentinFilename: 'page’
beforeScanDo:

[:parser |

parser
saxDriver:(exampleDispatcher);
validate: true].

builder root.

4/19/05 Doc 15 Prototype & Builder slide #17

Consequences

It lets you vary a product's internal representation

It isolates code for construction and representation

It gives you finer control over the construction process

Implementation

Assembly and construction interface

Builder may have to pass parts back to director, who will
then pass them back to builder

Why no abstract classes for products

Empty methods as default in Builder

