
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005

Doc 15 Prototype & Builder
Contents

...Prototype! 3
...Intent! 3

...Applicability! 3
...Copying Issues! 5

...Shallow Copy Verse Deep Copy! 5
...Cloning Issues! 8
..Consequences! 11

..Implementation Issues! 11
...Builder! 12

...Applicability! 12
...Example – XML Parser! 14

..Consequences! 17

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

4/19/05� Doc 15 Prototype & Builder slide #1

References

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma,
Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 117-126, 97-106

The Design Patterns Smalltalk Companion, Alpert, Brown, Woolf, Addision-
Wesley, 1998, pp. 77-90, 47-62

4/19/05� Doc 15 Prototype & Builder slide #2

Prototype
Intent

Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype

Applicability

Use the Prototype pattern when

• A system should be independent of how its products are
created, composed, and represented; and

• When the classes to instantiate are specified at run-time; or

• To avoid building a class hierarchy of factories that parallels
the class hierarchy of products; or

• When instances of a class can have one of only a few
different combinations of state.

It may be easier to have the proper number of prototypes
and clone them rather than instantiating the class
manually each time

4/19/05� Doc 15 Prototype & Builder slide #3

Insurance Example

Insurance agents start with a standard policy and customize it

Two basic strategies:

• Copy the original and edit the copy

• Store only the differences between original and the
customize version in a decorator

4/19/05� Doc 15 Prototype & Builder slide #4

Copying Issues
Shallow Copy Verse Deep Copy

Original Objects

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

4/19/05� Doc 15 Prototype & Builder slide #5

Shallow Copy Verse Deep Copy

Original Objects

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Deep Copy

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

4/19/05� Doc 15 Prototype & Builder slide #6

Shallow Copy Verse Deep Copy

Original Objects

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Deeper Copy

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

aChair

aTable

4/19/05� Doc 15 Prototype & Builder slide #7

Cloning Issues

How to in C++ - Copy Constructors

class Door
 {
 public:
 Door();
 Door(const Door&);

 virtual Door* clone() const;

 virtual void Initialize(Room*, Room*);
 // stuff not shown
 private:
 Room* room1;
 Room* room2;
 }

Door::Door (const Door& other) //Copy constructor
 {
 room1 = other.room1;
 room2 = other.room2;
 }

Door* Door::clone() const
 {
 return new Door(*this);
 }

4/19/05� Doc 15 Prototype & Builder slide #8

How to in Java - Object clone()

protected Object clone() throws CloneNotSupportedException

Default is shallow copy

Returns: A clone of this Object.

Throws: OutOfMemoryError

Throws: CloneNotSupportedException

class Door implements Cloneable {
 public void Initialize(Room a, Room b)
 { room1 = a; room2 = b; }

 public Object clone() throws
 CloneNotSupportedException {
 // modify this method for deep copy
 // no need to implement this method for shallow copy
 return super.clone();
 }
 Room room1;
 Room room2;
}

4/19/05� Doc 15 Prototype & Builder slide #9

VisualWorks Smalltalk

Object>>shallowCopy
 Does a shallowCopy of the receiver

Object>>copy
 ^self shallowCopy postCopy

! “Template method for copy”

Copy is the primary method for copying an object

Classes override postCopy to do more than shallow copyDoor

Smalltalk.CS635 defineClass: #Door
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: 'room1 room2 '

postCopy
 room1 := room1 copy.
 room2 := room2 copy.

4/19/05� Doc 15 Prototype & Builder slide #10

Consequences

• Adding and removing products at run-time

• Specifying new objects by varying values

• Specifying new objects by varying structure

• Reducing subclassing (from factory method)

• Configuring an application with classes dynamically

Implementation Issues

• Using a prototype manager

• Implementing the Clone operation

• Initializing clones

4/19/05� Doc 15 Prototype & Builder slide #11

Builder
Intent

Separate the construction of a complex object from its
representation so that the same construction process can
create different representations

Applicability

Use the Builder pattern when

• The algorithm for creating a complex object should be
independent of the parts that make up the object and how
they're assembled

• The construction process must allow different
representations for the object that's constructed

4/19/05� Doc 15 Prototype & Builder slide #12

Collaborations

The client creates the Director object and configures it with
the desired Builder object

Director notifies the builder whenever a part of the product
should be built

Builder handles requests from the director and adds parts to
the product

The client retrieves the product from the builder

4/19/05� Doc 15 Prototype & Builder slide #13

Example – XML Parser

Director
XML Parser

Abstract Builder Class
XML.SAXDriver (Smalltalk)
org.xml.sax.helpers.DefaultHandler (Java)
DefaultHandler (C++)

Concrete Builder Class
Your subclass of the abstract builder

Client
 Your code that uses the tree built

4/19/05� Doc 15 Prototype & Builder slide #14

Java Example

 public static void main(String argv[])
 {
 SAXDriverExample handler = new SAXDriverExample();

 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try
 {
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File("sample"), handler);
 }
 catch (Throwable t)
 {
 t.printStackTrace();
 }
 System.out.println(handler.root());
 }

4/19/05� Doc 15 Prototype & Builder slide #15

Smalltalk Example

| builder exampleDispatcher |

builder := SAXDriverExample new.
exampleDispatcher := SAXDispatcher new contentHandler: builder.
XMLParser
 processDocumentInFilename: 'page'
 beforeScanDo:
 [:parser |
 parser
 saxDriver:(exampleDispatcher);
 validate: true].
builder root.

4/19/05� Doc 15 Prototype & Builder slide #16

Consequences

• It lets you vary a product's internal representation

• It isolates code for construction and representation

• It gives you finer control over the construction process

Implementation

• Assembly and construction interface

Builder may have to pass parts back to director, who will
then pass them back to builder

• Why no abstract classes for products

• Empty methods as default in Builder

4/19/05� Doc 15 Prototype & Builder slide #17

