
3/2/05 Doc 9 Cohesion slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005

Doc 9 Cohesion
Contents

Cohesion ... 2
Module Cohesion.. 4

Coincidental.. 4
Logical .. 5
Temporal .. 6
Procedural .. 8
Communication... 9
Sequential .. 10
Functional... 11
Informational Strength .. 12

Object Cohesion ... 13

References

Object Coupling and Object Cohesion, chapter 7 of Essays on
Object-Oriented Software Engineering, Vol 1, Berard, Prentice-
Hall, 1993,

Copyright ©, All rights reserved. 2004 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the
copyright on this document.

3/2/05 Doc 9 Cohesion slide # 2

Cohesion

"Cohesion is the degree to which the tasks performed by a
single module are functionally related."

IEEE, 1983

"Cohesion is the "glue" that holds a module together. It can be
thought of as the type of association among the component
elements of a module. Generally, one wants the highest level
of cohesion possible."

Bergland, 1981

"A software component is said to exhibit a high degree of
cohesion if the elements in that unit exhibit a high degree of
functional relatedness. This means that each element in the
program unit should be essential for that unit to achieve its
purpose."

Sommerville, 1989

3/2/05 Doc 9 Cohesion slide # 3

Types of Module Cohesion
From Worst to Best

Coincidental (worst)

Logical

Temporal

Procedural

Communication

Sequential

Functional (best)

3/2/05 Doc 9 Cohesion slide # 4

Module Cohesion
Coincidental

Little or no constructive relationship among the elements of the
module

Common Object Occurrence:

Object does not represent any single object-oriented
concept

Collection of commonly used source code as a class
inherited via multiple inheritance

class Rous
{
public static int findPattern(String text, String pattern)

{ // blah}

public static int average(Vector numbers)
{ // blah}

public static OutputStream openFile(String fileName)
{ // blah}

}

3/2/05 Doc 9 Cohesion slide # 5

Module Cohesion
Logical

Module performs a set of related functions, one of which is
selected via function parameter when calling the module

Similar to control coupling

Cure:

Isolate each function into separate operations

public void sample(int flag)
{
switch (flag)

{
case ON:

// bunch of on stuff
break;

case OFF:
// bunch of off stuff
break;

case CLOSE:
// bunch of close stuff
break;

case COLOR:
// bunch of color stuff
break;

}
}

3/2/05 Doc 9 Cohesion slide # 6

Module Cohesion
Temporal

Elements are grouped into a module because they are all
processed within the same limited time period

Common example:

"Initialization" modules that provide default values for
objects

"End of Job" modules that clean up

procedure initializeData()
{
font = "times";
windowSize = "200,400";
foo.name = "Not Set";
foo.size = 12;
foo.location = "/usr/local/lib/java";
}

Cure: Each object should have a constructor and destructor

class foo
{
public foo()

{
foo.name = "Not Set";
foo.size = 12;
foo.location = "/usr/local/lib/java";
}

}

3/2/05 Doc 9 Cohesion slide # 7

Sample Configuration File

[Macintosh] [General]
EquationWindow=146,171,406,661 Zoom=200
SpacingWindow=0,0,0,0 CustomZoom=150

ShowAll=0
Version=2.01

[Spacing] OptimalPrinter=1
LineSpacing=150% MinRect=0
MatrixRowSpacing=150% ForceOpen=0
MatrixColSpacing=100% ToolbarDocked=1
SuperscriptHeight=45% ToolbarShown=1
SubscriptDepth=25% ToolbarDockPos=1
LimHeight=25%
LimDepth=100% [Fonts]
LimLineSpacing=100% Text=Times
NumerHeight=35% Function=Times
DenomDepth=100% Variable=Times,I
FractBarOver=1pt LCGreek=Symbol,I
FractBarThick=0.5pt UCGreek=Symbol
SubFractBarThick=0.25pt Symbol=Symbol
FenceOver=1pt Vector=Times,B
SpacingFactor=100% Number=Times
MinGap=8%
RadicalGap=2pt [Sizes]
EmbellGap=1.5pt Full=12pt
PrimeHeight=45% Script=7pt

ScriptScript=5pt

Symbol=18pt

SubSymbol=12pt

Call these constructors/destructors from a nonobject-oriented
routine that performs a single, cohesive task

3/2/05 Doc 9 Cohesion slide # 8

Module Cohesion
Procedural

Associates processing elements on the basis of their procedural
or algorithmic relationships

Procedural modules are application specific

In context the module seems reasonable

Removed from the context these modules seem strange and
very hard to understand

Why is that being done here?

Can not understand module without understanding the program
and the conditions existing when module is called

Makes module hard to modify, understand

Class Builder verse Program writer

Cure:

Redesign the system

If a module is necessary, remove it from objects

3/2/05 Doc 9 Cohesion slide # 9

Module Cohesion
Communication

Operations of a module all operate upon the same input data
set and/or produce the same output data

Cure:

Isolate each element into separate modules

Rarely occurs in object-oriented systems due to polymorphism

3/2/05 Doc 9 Cohesion slide # 10

Module Cohesion
Sequential

Sequential association the type in which the output data from
one processing element serve as input data for the next
processing element

A module that performs multiple sequential functions where the
sequential relationship among all of the functions is implied by
the problems or application statement and where there is a data
relationship among all of the functions

Cure:

Decompose into smaller modules

3/2/05 Doc 9 Cohesion slide # 11

Module Cohesion
Functional

If the operations of a module can be collectively described as a
single specific function in a coherent way, the module has
functional cohesion

If not, the module has lower type of cohesion

In an object-oriented system:

• Each operation in public interface of an object should be
functional cohesive

• Each object should represent a single cohesive concept

3/2/05 Doc 9 Cohesion slide # 12

Module Cohesion
Informational Strength

Myers states:

"The purpose of an informational-strength module is to hide
some concept, data structure, or resource within a single
module.

An informational-strength module has the following definition:

• It contains multiple entry points

• Each entry point performs a single specific function

• All of the functions are related by a concept, data structure, or
resource that is hidden within the module"

3/2/05 Doc 9 Cohesion slide # 13

Object Cohesion

The degree to which components of a class are tied together

Evaluating cohesion requires:

• Technical knowledge of the application domain

• Some experience in building, modifying, maintaining, testing
and managing applications in the appropriate domain

• Technical background in and experience with reusability

3/2/05 Doc 9 Cohesion slide # 14

Questions to probe cohesiveness of an object

Does the object represent a complete and coherent concept or
does it more closely resemble a partial concept, or a random
collection of information?

Does the object directly correspond to a "real world entity,"
physical or logical?

Is the object characterized in very non-specific terms?

Collection of data, statistics, etc.

Do each of the methods in the public interface for the object
perform a single coherent function?

If the object (or system of objects) is removed from the context
of the immediate application, does it still represent a coherent
and complete object-oriented concept?

For objects that are "system of objects"

Does the system represent an object-oriented concept?

Do all the objects directly support, or directly contribute to the
support of, the object-oriented concept that the system
represents?

Are there missing objects?

3/2/05 Doc 9 Cohesion slide # 15

Objects in Isolation

Isolation means without considering any hierarchy that may
contain the object or class

Does not discuss non-objects:

• Object with only functions
• Objects with only data

3/2/05 Doc 9 Cohesion slide # 16

Individual Objects

A primitive method is any method that cannot be implemented
simply, efficiently, and reliably without knowledge of the
underlying implementation of the object

A composite method is any method constructed from two or
more primitive methods – sometimes from different objects

A sufficient set of primitive methods for an object is a
minimum set of primitive methods to accomplish all necessary
work with on the object

A sufficient set of primitive methods has two major problems:

• Some tasks may be awkward and/or difficult with just a
sufficient set of primitive methods

• A sufficient set of primitive methods may not allow us to fully
capture the abstraction represented by the object

A complete set of primitive methods is a set of primitive
methods that both allows us to easily work with the object, and
fully captures the abstraction represented by the object.

3/2/05 Doc 9 Cohesion slide # 17

An object is not as cohesive as it could be if the public interface
contains:

• Only primitive methods, but does not fully capture the
abstraction represented by the object

• Primitive and composite methods, but does not fully capture
the abstraction represented by the object

• A sufficient set of primitive methods with composite methods

• No primitive methods, just composite methods

Note

• Objects with a sufficient set of primitive methods with
composite methods is more cohesive than objects with out a
sufficient set of primitive methods

• All public methods must directly support the abstraction
represented by the object. The methods must make sense
when object is removed from the application

3/2/05 Doc 9 Cohesion slide # 18

Composite Objects

A composite object is an object that is conceptually composed
of two, or more, other objects, which are externally discernable.

Component objects are those that make up the composite
object.

Component objects are externally discernable if

• Component objects can be directly queried or changed via
methods in the public interface of the composite object and/or

• The externally discernible state of the object is directly
affected by the presence or absence of one or more
component objects

3/2/05 Doc 9 Cohesion slide # 19

Ranking of Cohesion of Composite Objects
Increasing order of Goodness

• Externally discernible component objects not related

• Some externally discernible component objects are related,
the group component objects does not make sense

• The group component objects does not represent a single
stable object-oriented concept, but are all bound together
some how in an application

• A majaroity of the externally discernible component objects
support a single, coherent, object-oriented concept, but at
least one does not

• All of the externally discernible component objects support a
single, coherent, object-oriented concept, but at least one
needed is missing

• All of the externally discernible component objects support a
single, coherent, object-oriented concept, and none are
missing

3/2/05 Doc 9 Cohesion slide # 20

Accessing Cohesion of an Individual Object

Assessment of the public methods/public non-
methods/component objects

Are all the items appropriate for the given object?

Do we have at least a minimally sufficient set of items?

Do we have extra or application-specific items?

