
2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005

Doc 6 Decorator, Proxy & Adapter
Contents

Decorator ..3
Class Structure...3
Motivation - Text Views ..5
Applicability ..8
Consequences ...8
Implementation Issues..9
Examples..10

Proxy...12
Structure...12
Dynamics..13
Reasons for Object Proxies..15
Smalltalk Proxy Tricks ..19

Adapter ...23
Motivating Adapter..23
Adapter...27
Consequences ...31

Copyright ©, All rights reserved. 2005 SDSU & Roger
Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700
USA. OpenContent (http://www.opencontent.org/opl.shtml) license defines
the copyright on this document.

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 2

References

Design Patterns: Elements of Resuable Object-Oriented
Software, Gamma, Helm, Johnson, Vlissides, Addison
Wesley, 1995, pp. 175-185, 207-217, 139-150

The Design Patterns Smalltalk Companion, Alpert, Brown,
Woolf, Addision-Wesley, 1998, pp. 161-178, 213-221, 105-
120

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 3

Decorator

Changing the Skin of an Object

Class Structure

ConcreteDecoratorB

operation()
addedBehavior()

super->operation()
addedBehavoir()

Component
operation()

Decorator

operation()
component

ConcreteComponent
operation()

ConcreteDecoratorA
addedState
operation()

component->operation()

Runtime Structure

aDecorator
component aComponent

aDecorator
component

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 4

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 5

Motivation - Text Views

A text view has the following features:

side scroll bar
Bottom scroll bar
3D border
Flat border

This gives 12 different options:

TextView
TextViewWithNoBorder&SideScrollbar
TextViewWithNoBorder&BottomScrollbar
TextViewWithNoBorder&Bottom&SideScrollbar
TextViewWith3DBorder
TextViewWith3DBorder&SideScrollbar
TextViewWith3DBorder&BottomScrollbar
TextViewWith3DBorder&Bottom&SideScrollbar
TextViewWithFlatBorder
TextViewWithFlatBorder&SideScrollbar
TextViewWithFlatBorder&BottomScrollbar
TextViewWithFlatBorder&Bottom&SideScrollbar

How to implement?

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 6

Solution 1 - Use Object Composition

Border

NoBorder 3DBorder Flat

Scrollbar

Vertical
Scrollbar

Horizontal
Scrollbar

TextView
aBorder
verticalScroll
horizontalScroll

class TextView {
Border myBorder;
ScrollBar verticalBar;
ScrollBar horizontalBar;

public void draw() {
myBorder.draw();
verticalBar.draw();
horizontalBar.draw();
code to draw self

}
etc.

}

But TextView knows about all the variations!
New type of variations require changing TextView
 (and any other type of view we have)

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 7

Solution 2 - Use Decorator
Object Composition Inside out

Change the skin of an object not it guts

TextView has no borders or scrollbars!
Add borders and scrollbars on top of a TextView

VisualComponent

VisualDecorator
component

TextView

Border

3DBorder Flat

Scrollbar

Vertical
Scrollbar

Horizontal
Scrollbar

Runtime Structure

aBorderDecorator
component aTextViewaScrollDecorator

component

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 8

Applicability

Use Decorator:

• To add responsibilities to individual objects dynamically and
transparently

• For responsibilities that can be withdrawn

• When subclassing is impractical - may lead to too many
subclasses

Commonly used in basic system frameworks

Windows, streams, fonts

Consequences

More flexible than static inheritance

Avoids feature laden classes high up in hierarchy

Lots of little objects

A decorator and its components are not identical

So checking object identification can cause problems

if (aComponent instanceof TextView) blah

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 9

Implementation Issues

Keep Decorators lightweight

Don't put data members in VisualComponent

Have Decorator forward all component operations

Three ways to forward messages
• Simple forward
• Extended forward
• Override

ConcreteDecoratorB

Component
operation()

Decorator

operation()
component

ConcreteComponent
operation()

ConcreteDecoratorA

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 10

Examples
Java Streams

import java.io.*;
import sdsu.io.*;
class ReadingFileExample

{
public static void main(String args[]) throws Exception

{
FileInputStream inputFile;
BufferedInputStream bufferedFile;
ASCIIInputStream cin;

inputFile = new FileInputStream("ReadingFileExample.java"
);

bufferedFile = new BufferedInputStream(inputFile);
cin = new ASCIIInputStream(bufferedFile);

System.out.println(cin.readWord());

for (int k = 1 ; k < 4; k++)
System.out.println(cin.readLine());

}
}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 11

Insurance

Insurance policies have payment caps for claims

Sometimes the people with the same policy will have different
caps

A decorator can be used to provide different caps on the
same policy object

Similarly for deductibles & copayments

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 12

Proxy
proxy n. pl prox-ies The agency for a person who acts as a
substitute for another person, authority to act for another

Structure

AbstractSubject
request()

RealSubject
request()

Proxy

request() realSubject->request()
realSubject

Client

The Pattern

The proxy has the same interface as the original object

Use common interface (or abstract class) for both the proxy
and original object

Proxy contains a reference to original object, so proxy can
forward requests to the original object

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 13

Dynamics

Client Proxy

doTask() service() pre-processing()

service()

post-processing()

RealSubject

Runtime Objects

aClient
subject aRealSubjectaProxy

realSubject

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 14

Sample Proxy

public class Proxy
{
Foo target;

public float bar(int size)
{
preprocess here
float answer = target.bar(size);
postProcess here
return answer;
}

other methods as needed
}

Preprocessing & post-processing depend on purpose of the
proxy

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 15

Reasons for Object Proxies
Remote Proxy

The actual object is on a remote machine (remote address
space)

Hide real details of accessing the object

Used in CORBA, Java RMI

Machine A

HelloClient

Machine B

HelloServer

Server
Proxy Client

Proxy

SayHello()
SayHello() SayHello()

Hello
Hello

HelloHelloHello

public class HelloClient {
public static void main(String args[]) {

try {
String server = getHelloHostAddress(args);
Hello proxy = (Hello) Naming.lookup(server);
String message = proxy.sayHello();
System.out.println(message);

}
catch (Exception error)

{ error.printStackTrace(); }
}

}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 16

Reasons for Object Proxies Continued

Virtual Proxy
• Creates/accesses expensive objects on demand

• You may wish to delay creating an expensive object until it
is really accessed

• It may be too expensive to keep entire state of the object in
memory at one time

Protection Proxy
• Provides different objects different level of access to original

object

Cache Proxy (Server Proxy)
• Multiple local clients can share results from expensive

operations: remote accesses or long computations

Firewall Proxy
• Protect local clients from outside world

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 17

Synchronization Proxy
• Synchronize multiple accesses to real subject

public class Table {
public Object elementAt(int row, int column){ blah }

public void setElementAt(Object element, int row, int column)
{ blah}

}

public class RowLockTable {
Table realTable;
Integer[] locks;

public RowLockTable(Table toLock) {
realTable = toLock;
locks = new String[toLock.numberOfRows()];
for (int row = 0; row< toLock.numberOfRows(); row++)

locks[row] = new Integer(row);
}

public Object elementAt(int row, int column) {
synchronized (locks[row]) {

return realTable.elementAt(row, column);
}

}

public void setElementAt(Object element, int row, int column){
synchronized (locks[row]) {

return realTable.setElementAt(element, row, column);
}

}
}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 18

Counting Proxy

Delete original object when there are no references to it

Prevent accidental deletion of real subject

Collect usage statistics

Sample use is making C++ pointer safe

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 19

Smalltalk Proxy Tricks

When an object is sent a message

The object's class and the object's class’s superclasses are
searched for the method

If the method is not found the object is sent the message:

doesNotUnderstand:

This method in Object raises an exception

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 20

Prototyping of a Proxy

One can use doesNotUnderstand: to implement a pluggable
proxy

Example

Object subclass: #Proxy
instanceVariableNames: 'target '
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Class Method

on: anObject
^super new target: anObject

Instance Methods

doesNotUnderstand: aMessage
^target

perform: aMessage selector
withArguments: aMessage arguments

target: anObject
target := anObject

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 21

Examples of Using the Proxy

| wrapper |
wrapper := Proxy on: Transcript.
wrapper open.
wrapper show: 'Hi mom'.

| wrapper |
wrapper := Proxy on: 3.
wrapper + 5.

| wrapper |
wrapper := Proxy on: 'Hi '.
wrapper , ' mom'.

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 22

Why just for Prototyping

doesNotUnderstand:

• Can be hard to debug
• Is slower than regular message send

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 23

Adapter
Motivating Adapter
Java CGI & Servlets

Both Java CGI and servlets are used for server-side
processing of certain HTML requests, like processing HTML
forms

Servlets have greater functionality and are faster, but require
special Web servers or servers with special extensions

To help write Java CGI programs there is class sdsu.net.CGI

It would be useful in moving code between servers to avoid
having to rewrite the code

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 24

One Problem

One issue is access to the CGI environment variables

There are about 20 common CGI environment variables

In servlets one has an HttpRequest class that has a getX()
method for each CGI environment variable

sdsu.net.CGI class returns a hash table with one entry per
CGI environment variable

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 25

Solution

We can write a wrapper around HttpRequest to make it act
like a hash table

The Wrapper or Adapter

class CGIAdapter extends Hashtable
{
Hashtable CGIvariables = new Hashtable(20);

public CGIAdapter(HttpRequest CGIEnvironment)
{
CGIvariables.put("AUTH_TYPE" ,

CGIEnvironment.getAuthType());

CGIvariables.put("REMOTE_USER" ,
CGIEnvironment.getRemoteUser());

etc.
}

public Object get(Object key)
{
return CGIvariables.get(key);
}

etc.
}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 26

Going the other Direction

Adapting servlet code to normal CGI requires extracting the
CGI environment variables out of the hash table and putting
them into an object that implements the public interface of the
HttpRequest class

class HTTPAdapter extends HttpRequest
{
Hashtable CGIvariables;

public HTTPAdapter(Hashtable CGIEnvironment)
{
CGIvariables = CGIEnvironment;
}

public String getAuthType()
{
return (String) CGIvariables.get("AUTH_TYPE");
}

public String getRemoteUser()
{
return (String) CGIvariables.get("REMOTE_USER");
}

etc.
}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 27

Adapter

The adapter pattern converts the interface of a class into
another interface.

Use the Adapter pattern when

• You want to use an existing class and its interface does not
match the one you need

• You want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is classes that don’t
necessarily have compatible interfaces

• You need to use several existing subclasses, but it’s
impractical to adapt their interface by subclassing everyone.
An object adapter can adapt the interface of its parent class

Adapter has two forms:
• Class Adapter
• Object Adapter

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 28

Class Adapter

Client Target
request()

Adaptee
specificRequest()

Adapter
request() specificRequest()

(implementation)

Object Adapter

Client Target
request() Adaptee

specificRequest()

Adapter

request()
adaptee

adaptee->specificRequest()

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 29

Class Adapter Example

class OldSquarePeg {
public:

void squarePegOperation()
{ do something }

}

class RoundPeg {
public:

void virtual roundPegOperation = 0;
}

class PegAdapter: private OldSquarePeg,
public RoundPeg {

public:
void virtual roundPegOperation() {

add some corners;
squarePegOperation();

}
}

void clientMethod() {
RoundPeg* aPeg = new PegAdapter();
aPeg->roundPegOperation();

}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 30

Object Adapter Example

class OldSquarePeg {
public:

void squarePegOperation() { do something }
}

class RoundPeg{
public:

void virtual roundPegOperation = 0;
}

class PegAdapter: public RoundPeg {
private:

OldSquarePeg* square;

public:
PegAdapter() { square = new OldSquarePeg; }

void virtual roundPegOperation() {
add some corners;
square->squarePegOperation();
}

}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 31

Consequences

A Class adapter uses inheritance so

• Only adapts a class and all its parents, not all its subclasses

• Lets Adapter override some of Adaptee’s behavior

• Does not introduce an additional pointer indirection

An object adapter uses object composition so

• Lets a single Adapter work with many Adaptees

• Makes it harder to override Adaptee behavior as the
Adapter may not know with Adaptee it is working with

Other issues:

• How much adapting does the Adapter do?

• Pluggable adapters

• Using two-way adapters

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 32

How Much Adapting does the Adapter do?

The adapter may have to work very little or a great deal to
adapt the Adaptee to the Target

The Adapter may just map one operation to another

class PegAdapter: public RoundPeg {
private:

OldSquarePeg* square;

public:
PegAdapter() { square = new OldSquarePeg;}

void roundPegOperation() {
square->squarePegOperation();

}
}

The Adapter may have to work hard if the Target operation
does not have a comparable operation in the Adaptee

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 33

Pluggable Adapters

In the CGI example we adapted a class with getX() methods
to a hash table interface

It is likely that we may adapt a class with getX() methods to a
hashtable in the future

It would be nice to write one class to do all such adapting

This class would be given a list of keys to getX methods and
an Adaptee object

HttpRequest CGIEnvironment = getHttpRequest();
PluggableHashAdapter sample =

new PluggableHashAdapter(CGIEnvironment);

sample.adapt("AUTH_TYPE" , getAuthType);
sample.adapt("REMOTE_USER" , getRemoteUser);
etc.

sample.get(“REMOTE_USER”);

Pluggable Adapters are used in interface components, where
we know in advance that we will adapt the component to other
interfaces

Pluggable Adapters are common in Smalltalk, were it is easier
to map strings to method calls

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 34

Using two-way Adapter

In the SquarePeg-RoundPeg example the SquarePeg is
adapted to the RoundPeg

So a SquarePeg can be used where a RoundPeg is needed,
but not the other way around.

A two-way adapter would also allow a RoundPeg be used in
place of the SquarePeg

class OldSquarePeg {
public:

void virtual squarePegOperation() { blah }
}

class RoundPeg {
public:

void virtual roundPegOperation() { blah }
}

class PegAdapter: public OldSquarePeg, RoundPeg {
public:

void virtual roundPegOperation() {
add some corners;
squarePegOperation();

}
void virtual squarePegOperation() {

add some corners;
roundPegOperation();

}
}

2/15/05 Doc 6 Decorator, Proxy & Adapter slide # 35

