2/3/05 Doc 5 Template & Factory Method Slide # 1

CS 635 Advanced Object-Oriented Design &
Programming
Spring Semester, 2005
Doc 4 Template Method & Null Object

Contents

Template Method............coooii i, 3
INtrodUCtioN.......ce 3
INtent .. 6
MOtIVatioN ... 6
Applicability ..o 9
SHTUCIUrE ... e 10
CONSEQUENCES ...ceuniiiieii et 11
Implementation.............ccooo i, 13
Implementing a Template Method 14
Constant Methodsoooiiiiiiii e, 15
NUIODJECE ... e, 17
SHTUCIUrE ... e 17
Binary Search Tree Example...........ccoooveiiiiiiiiie 18
Refactoring......ooouiie e, 22
Introduce Null Object...........ccooviiiiiiii e, 22
Applicability ... 23
CONSEQUENCES ...ceuniiiieii ettt e eaaaes 24
Implementation.............ccooo i, 26
EXEICISES ..o 28

Copyright ©, All rights reserved. 2005 SDSU & Roger
Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700
USA. OpenContent (http://WWW.opencontent.orq/opl.shtml) license defines
the copyright on this document.

2/3/05 Doc 5 Template & Factory Method Slide # 2

References

http://c2.com/cgi/wiki? TemplateMethodPattern WikiWiki comments on the Template Method

http://wiki.cs.uiuc.edu/PatternStories/TemplateMethodPattern Stories about the Template
Method

Design Patterns: Elements of Resuable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, Addison Wesley, 1995, pp. 325-330

The Design Patterns Smalltalk Companion, Alpert, Brown, Woolf, Addision-Wesley, 1998,pp.
355-370

Refactoring: Improving the Design of Existing Code, Fowler, 1999, pp. 260-266

“Null Object”, Woolf, in Pattern Languages of Program Design 3, Edited by Martin,
Riehle, Buschmmann, Addison-Wesley, 1998, pp. 5-18

Reading

Design Patterns: Elements of Resuable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, Addison Wesley, 1995, pp. 325-330

The Design Patterns Smalltalk Companion, Alpert, Brown, Woolf, Addision-Wesley, 1998,pp.
355-370

2/3/05 Doc 5 Template & Factory Method Slide # 3

Template Method

Introduction
Polymorphism

class Account {
public:
void virtual Transaction(float amount)
{ balance += amount;}
Account(char* customerName, float InitialDeposit = 0);
protected:
char* name;
float balance;

b

class JuniorAccount : public Account {
public: void Transaction(float amount) {// put code here}

b

class SavingsAccount : public Account {
public: void Transaction(float amount) {// put code here}

b

Account* createNewA ccount()

{
// code to query customer and determine what type of
// account to create

55

main() {
Account® customer;
customer = createNewAccount();
customer->Transaction(amount);

b

2/3/05 Doc 5 Template & Factory Method Slide # 4

Deferred Methods

ndame I

class Account {
public:
void virtual Transaction() = 0;

b

class JuniorAccount : public Account {
public
void Transaction() { put code here}

2/3/05 Doc 5 Template & Factory Method Slide # 5

Template Methods

Account

[Tranaa-:tioﬂ } kalance
C Tranzaction Subgartﬂ :J name

li Tranzaction Subpart B)
li Tranzaction Subpart O)

Junio rﬁmnun/- _\ SavingsAccount
-~ = = = = = = r — — — — — =1
(_Transaction Subpart A) I { Transaction Subpart C) |

class Account {
public:
void Transaction(float amount);
void virtual TransactionSubpartA();
void virtual TransactionSubpartB();
void virtual TransactionSubpartC();

b

void Account::Transaction(float amount) {
TransactionSubpartA(); TransactionSubpartB();
TransactionSubpartC(); // EvenMoreCode;

b

class JuniorAccount : public Account {
public: void virtual TransactionSubpartA(); }

class SavingsAccount : public Account {
public: void virtual TransactionSubpartC(); }

Account®* customer;
customer = createNewAccount();
customer->Transaction(amount);

2/3/05 Doc 5 Template & Factory Method Slide # 6

Template Method- The Pattern
Intent

Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses

Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm’s structure

Motivation

An application framework with Application and Document
classes

Abstract Application class defines the algorithm for opening
and reading a document

void Application::OpenDocument (const char* name) {
if (!CanNotOpenDocument (name)) {
return;

b

Document™ doc = DoCreateDocument();

if (doc) {
_docs->AddDocument(doc);
AboutToOpenDocument(doc);
Doc->Open();
Doc->DoRead();

b

2/3/05 Doc 5 Template & Factory Method Slide # 7

Smalltalk Examples
PrintString

Object>>printString
| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
NaStream contents

Object>>printOn: aStream
| title |
title := self class printString.
aStream nextPutAll:
((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).
aStream nextPutAll: title

Object provides a default implementation of printOn:

Subclasses just override printOn:

2/3/05 Doc 5 Template & Factory Method Slide # 8
Collections & Enumeration

Standard collection iterators
collect:, detect:, do:, inject:into:, reject:, select:

Collection>>collect: aBlock
| newCollection |
newCollection := self species new.
self do: [:each | newCollection add: (aBlock value: each)].
“newCollection

Collection>>do: aBlock
self subclassResponsibility

Collection>>inject: thisValue into: binaryBlock
| nextValue |
nextValue := thisValue.
self do: [:each | nextValue := binaryBlock value: nextValue value: each].
nextValue

Collection>>reject: aBlock
~self select: [:element | (aBlock value: element) == false]

Collection>>select: aBlock
| newCollection |
newCollection := self species new.
self do: [:each | (aBlock value: each) ifTrue: [newCollection add: each]].
“newCollection

Subclasses only have to implement:
species, do:, add:

2/3/05 Doc 5 Template & Factory Method Slide # 9
Applicability
Template Method pattern should be used:
* To implement the invariant parts of an algorithm once.
Subclasses implement behavior that can vary

* When common behavior among subclasses should be
factored and localized in a common class to avoid code
duplication

To control subclass extensions

Template method defines hook operations

Subclasses can only extend these hook operations

2/3/05 Doc 5 Template & Factory Method Slide # 10

Structure
AbstractUClass >
code:
lemplateMethod() o= = = = pimitiveOperationl();
PrimitiveOperation () more code:
Primitive Operation2() Primitive D;JEratiDﬂE() :
still more code;

ConcreteClass

Primitrve Operation]()
Primitrve OperationZ()

Participants

* AbstractClass
Defines abstract primitive operations that concrete
subclasses define to implement steps of an algorithm

Implements a template method defining the skeleton of
an algorithm

* ConcreteClass
Implements the primitive operations

Different subclasses can implement algorithm details
differently

2/3/05 Doc 5 Template & Factory Method Slide # 11

Consequences
This is the most commonly used of the 23 GoF patterns
Important in class libraries
Inverted control structure
Parent class calls subclass methods

Java's paint method is a primitive operation called by a
parent method

Beginning Java programs don't understand how the
following works:

import java.awt.*;
class HelloApplication extends Frame
{
public void paint(Graphics display)
{
int startX = 30;
int startY = 40;
display.drawString("Hello World", startX, startY);

b
b

2/3/05 Doc 5 Template & Factory Method Slide # 12
Consequences

Template methods tend to call:

» Concrete operations

* Primitive operations - must be overridden
* Factory methods

* Hook operations

Methods called in Template method and have default
implementation in AbstractClass

Provide default behavior that subclasses can extend
Smalltalk's printOn: aStream is a hook operation

It is important to denote which methods

* Must overridden

* Can be overridden
e Can not be overridden

2/3/05 Doc 5 Template & Factory Method Slide # 13
Implementation

Using C++ access control

* Primitive operations can be made protected so can only be
called by subclasses

* Template methods should not be overridden - make
nonvirtual

Minimize primitive operations
Naming conventions

* Some frameworks indicate primitive methods with special
prefixes

* MacApp use the prefix "Do"

2/3/05 Doc 5 Template & Factory Method Slide # 14

Implementing a Template Method'

Simple implementation
Implement all of the code in one method

The large method you get will become the template
method

Break into steps
Use comments to break the method into logical steps

One comment per step

Make step methods

Implement separate method for each of the steps

Call the step methods

Rewrite the template method to call the step methods

Repeat above steps

Repeat the above steps on each of the step methods
Continue until:

All steps in each method are at the same level of
generality

All constants are factored into their own methods

' See Design Patterns Smalltalk Companion pp. 363-364. Also see Reusability Through Self-Encapsulation, Ken
Auer, Pattern Languages of Programming Design, 1995, pp. 505-516

2/3/05 Doc 5 Template & Factory Method Slide # 15

Constant Methods
Template method is common in lazy initialization®

public class Foo {
Bar field;

public Bar getField() {
if (field == null)
field = new Bar(10);
return field;

b
b

What happens when subclass needs to change the default
field value?

public Bar getField() {
if (field == null)
field = defaultField();
return field;
}
protected Bar defaultField() {
return new Bar(10);

b

Now a subclass can just override defaultField()

2 See http://www.eli.sdsu.edu/courses/spring01/cs683/notes/coding/coding.htmi#Heading19 or Smalltalk Best
Practice Patterns, Kent Beck, Prentice Hall, 1997 pp. 85-86

2/3/05 Doc 5 Template & Factory Method Slide # 16
The same idea works in constructors

public Foo() {
field := defaultField();

b

Now a subclass can change the default value of a field by
overriding the default value method for that field

2/3/05 Doc 5 Template & Factory Method Slide # 17

NullObject

Structure

Client —™ AbstractObject

request()

A

RealObject NullObject

request() request()o— 4 — | do nothing

NullObject implements all the operations of the real object,

These operations do nothing or the correct thing for nothing

2/3/05 Doc 5 Template & Factory Method Slide # 18

Binary Search Tree Example
Without Null Object

public class BinaryNode {
Node left = new NullNode();

Node right = new NullNode();
int key;

public boolean includes(int value) {
if (key == value)
return true;
else if ((value < key) & left ==null))
return false;
else if (value < key)
return left.includes(value);
else if (right == null)
return false;
else
return right.includes(value);
h

etc.

2/3/05 Doc 5 Template & Factory Method Slide # 19

Binary Search Tree Example
Class Structure

Node

A

BinaryNode NullNode

Object Structure

NuH \\\\\\ NuH NuH
Node Node Node

NuII NuII
Node Node

2/3/05 Doc 5 Template & Factory Method Slide # 20
Searching for a Key

public class BinaryNode extends Node {
Node left = new NullNode();
Node right = new NullNode();
int key;

public boolean includes(int value) {
if (key == value)
return true;
else 1f (value < key)
return left.includes(value);
else
return right.includes(value);

b

etc.

b

public class NullNode extends Node {
public boolean includes(int value) {
return false;

b

etc.

b

2/3/05 Doc 5 Template & Factory Method Slide # 21

Comments on Example

BinaryNode always has two subtrees

No need check if left, right are null

Since NullNode has no state just need one instance

Use singleton pattern for the one instance

Access to NullNode is usually restricted to BinaryNode

Forces indicate that one may not want to use the Null
Object pattern

However, familiarity with trees makes it easy to explain
the pattern

Implementing an add method in NuliNode
Requires reference to parent or

Use proxy

2/3/05 Doc 5 Template & Factory Method Slide # 22

Refactoring
Introduce Null Object®

You have repeated checks for a null value
Replace the null value with a null object
Example
customer isNil
ifTrue: [plan := BillingPlan basic]
ifFalse: [plan := customer plan]
becomes:

* Create NullCustomer subclass of Customer with:

NullCustomer>>plan
~BillingPlan basic

e Make sure that each customer variable has either a real
customer or a NullCustomer

Now the code is:
plan := customer plan

* Often one makes a Null Object a singleton

3 Refactoring Text, pp. 260-266

2/3/05 Doc 5 Template & Factory Method Slide # 23
Applicability

Use the Null Object pattern when:

* Some collaborator instances should do nothing

* You want clients to ignore the difference between a
collaborator that does something and one that does nothing

Client does not have to explicitly check for null or some
other special value

* You want to be able to reuse the do-nothing behavior so
that various clients that need this behavior will consistently
work in the same way

Use a variable containing null or some other special value
instead of the Null Object pattern when:

* Very little code actually uses the variable directly

* The code that does use the variable is well encapsulated -
at least in one class

* The code that uses the variable can easily decide how to
handle the null case and will always handle it the same way

2/3/05 Doc 5 Template & Factory Method Slide # 24

Consequences
Advantages

Uses polymorphic classes

Simplifies client code

Encapsulates do nothing behavior

Makes do nothing behavior reusable

2/3/05 Doc 5 Template & Factory Method Slide # 25

Disadvantages

Forces encapsulation

Makes it difficult to distribute or mix into the behavior of
several collaborating objects

May cause class explosion

Forces uniformity

Different clients may have different idea of what “do
nothing” means

Is non-mutable

NullObject objects cannot transform themselves into a
RealObject

become: message in Smalltalk allows null objects to
“transform” themselves into real objects

2/3/05 Doc 5 Template & Factory Method Slide # 26
Implementation
* Too Many classes

Eliminate one class by making NullObject a subclass of
RealObject

* Multiple Do-nothing meanings
If different clients expect do nothing to mean different
things use Adapter pattern to provide different do-nothing
behavior to NullObject

* Transformation to RealObject

In some cases a message to NullObject should transform
it to a real object

Use the proxy pattern

2/3/05 Doc 5 Template & Factory Method Slide # 27
Generalized Null Object Pattern

A generalized Null Object pattern based on Objective-C with
an implementation in Smalltalk can be found at:

http://www.smalltalkchronicles.net/edition2-
1/null_object pattern.htm

2/3/05 Doc 5 Template & Factory Method Slide # 28

Exercises

1. Find the template method in the Java class hierarchy of
Frame that calls the paint(Graphics display) method.

3. Find other examples of the template method in Java or
Smalltalk.

4. When | did problem one, my IDE did not help much. How
useful was your IDE/tools? Does this mean imply that the use
of the template method should be a function of tools available
in a language?

5. Much of the presentation in this document follows very
closely to the presentation in Design Patterns: Elements of
Reusable Object-Oriented Software. This seems like a waste
of lecture time (and perhaps a violation of copyright laws).
How would you suggest covering patterns in class?

