
CS 580 Client-Server Programming
Spring Semester, 2006

Doc 11 Server types & Protocols
Feb 28, 2006

Copyright ©, All rights reserved. 2006 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

References

2

Internetworking with TCP/IP, BSD Socket Version Vol. 3, Comer, Stevens, Prentice-Hall,
1993

Types of Servers

3

Connectionless(UDP) verse Connection-Oriented (TCP)

Iterative verses Concurrent

Stateless verse stateful

Iterative verses Concurrent Server

4

Iterative

Single process

Handles requests one at a time

Good for low volume & requests that are answered quickly

Iterative verses Concurrent Server

5

Concurrent

Handle multiple requests concurrently

Normally uses thread/processes

Needed for high volume & complex requests

Harder to implement than iterative

Must deal with currency

Sample Concurrent Server

6

require 'socket'
class DateServer
 def initialize(port)
 @port = port
 end

 def run()
 server = TCPServer.new(@port)
 puts("start " + @port.to_s)
 while (session = server.accept)
 Thread.new(session) do |connection|
 process_request_on(connection)
 connection.close
 end
 end
 end

def process_request_on(socket)
 request = canonical_form(socket.gets("\n"))
 now = Time.now
 answer = case request
 when 'time'
 now.strftime("%X")
 when 'date'
 now.strftime("%x")
 else
 "Invalid request"
 end
 socket.send(answer + "\n",0)
 end

 def canonical_form(string)
 string.lstrip.rstrip.downcase
 end
end

Can you spot the problem?

Single Thread Concurrent Server

7

One can implement a concurrent server using one thread/process

while (true) {
 check if any new connects (non-block accept)
 if new connection accept
 process a little on each current request
}

Stateless verses Stateful Servers

8

State information

Information maintained by server about ongoing interactions with clients

Consumes server resources

How long does one maintain the state?

Modes of Operation

9

Stateful servers sometimes have different modes of operation

Each mode has a set of legal commands

In Login mode only the commands password & username are acceptable

After successful login client-server connection in transaction mode

In transaction mode command X, Y Z are legal

These modes are also called server states or just states

Protocol

10

Requirements for a "good protocol"

Well defined

Complete

Parsable

Extendable

Available protocol document

Assignment 2 Protocol

11

Client commands
count<sp>url<sp>;
reset<sp>url<sp>;

Server Responses
n<sp>ISO-8601Date<sp>;
reset<sp>url<sp>;
Invalid<sp>command<sp>

Client Request Server
Response

count /foo ; 1 2006-2-2 ;

count /foo ; 2 2006-2-2 ;

count /bar/foo ; 1 2006-2-2 ;

Well defined

12

Every bit of data sent in either direction has to have its place in the protocol description.

Protocol is a Language

Common formal description:
 BNF and Augmented BNF

Format of the description language needs to be part of the protocol document.

Examples are important

Complete

13

The protocol must cover all possible situations.

Garbage data
Old client or server (different protocol versions)
Illegal requests
Boundary conditions
Etc.

Parsable

14

Both clients and servers are computer programs.

A computer program's IQ is generally 0.

Design goals

Distinct information packets or messages

 Allow parsing independent of semantics

Consistency

 Allow for code reuse

Flexibility

Allow parsing independent of semantics

15

Client commands A
count<sp>url<sp>;
reset<sp>url<sp>;

Client commands B
count<sp>url<sp>;
reset,url^

How does the server parse each set of commands?

Available

16

Different groups may write clients and servers at different times.

Central registry for Internet protocols

Self regulating:
 RFC - Request For Comment
 IETF - Internet Engineering Task Force

Official:
 ISO
 ANSI

Protocol Types

17

Typical synchronous

Client sends request to server
Server responds with a reply

 HTTP, POP, SMTP, GOPHER, XMODEM

Typical asynchronous

Client and server both send information to each other concurrently.

 TELNET, RLOGIN, ZMODEM

A hybrid protocol is also possible

Protocol Design Issues

18

Protocol design is difficult!
Learn from examples

Some issues

Protocol extendibility and versioning

Byte order used for sending values

ASCII vs. Binary protocol

Synchronous vs. Asynchronous

State

Timeouts

