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Types of Servers
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Connectionless(UDP) verse Connection-Oriented (TCP)

Iterative verses Concurrent

Stateless verse stateful



Iterative verses Concurrent Server
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Iterative

Single process

Handles requests one at a time

Good for low volume & requests that are answered quickly



Iterative verses Concurrent Server
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Concurrent

Handle multiple requests concurrently

Normally uses thread/processes

Needed for high volume & complex requests

Harder to implement than iterative

Must deal with currency



Sample Concurrent Server
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require 'socket' 
class DateServer 
  def initialize(port) 
    @port = port 
  end 
  
  def run() 
    server = TCPServer.new( @port) 
    puts("start " + @port.to_s) 
    while (session = server.accept) 
      Thread.new(session) do |connection| 
        process_request_on(connection) 
        connection.close 
      end 
    end 
  end 

def process_request_on(socket) 
    request = canonical_form( socket.gets("\n") ) 
    now = Time.now 
    answer = case request 
      when 'time' 
        now.strftime("%X") 
      when 'date' 
        now.strftime("%x") 
      else 
        "Invalid request" 
    end 
    socket.send(answer + "\n",0) 
  end 

  def canonical_form(string) 
    string.lstrip.rstrip.downcase 
  end
end

Can you spot the problem?



Single Thread Concurrent Server
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One can implement a concurrent server using one thread/process

while (true) {
 check if any new connects (non-block accept)
 if new connection accept
 process a little on each current request
}



Stateless verses Stateful Servers
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State information

Information maintained by server about ongoing interactions with clients

Consumes server resources

How long does one maintain the state?



Modes of Operation
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Stateful servers sometimes have different modes of operation

Each mode has a set of legal commands 

In Login mode only the commands password & username are acceptable

After successful login client-server connection in transaction mode

In transaction mode command X, Y Z are legal

These modes are also called server states or just states



Protocol
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Requirements for a "good protocol"

Well defined

Complete

Parsable

Extendable

Available protocol document



Assignment 2 Protocol
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Client commands
count<sp>url<sp>;
reset<sp>url<sp>;

Server Responses
n<sp>ISO-8601Date<sp>;
reset<sp>url<sp>;
Invalid<sp>command<sp>

Client Request Server 
Response

count /foo ; 1 2006-2-2 ;

count /foo ; 2 2006-2-2 ;

count /bar/foo ; 1 2006-2-2 ;



Well defined
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Every bit of data sent in either direction has to have its place in the protocol description. 

Protocol is a Language 

Common formal description: 
 BNF and Augmented BNF 

Format of the description language needs to be part of the protocol document. 

Examples are important 



Complete
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The protocol must cover all possible situations. 

Garbage data 
Old client or server (different protocol versions) 
Illegal requests 
Boundary conditions 
Etc.



Parsable
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Both clients and servers are computer programs. 

A computer program's IQ is generally 0. 

Design goals

Distinct information packets or messages 

 Allow parsing independent of semantics 

Consistency 

 Allow for code reuse

Flexibility 



Allow parsing independent of semantics
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Client commands A
count<sp>url<sp>;
reset<sp>url<sp>;

Client commands B
count<sp>url<sp>;
reset,url^

How does the server parse each set of commands?



Available
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Different groups may write clients and servers at different times. 

Central registry for Internet protocols 

Self regulating: 
 RFC - Request For Comment 
 IETF - Internet Engineering Task Force

Official: 
 ISO 
 ANSI 



Protocol Types
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Typical synchronous
 
Client sends request to server 
Server responds with a reply

 HTTP, POP, SMTP, GOPHER, XMODEM 

Typical asynchronous

Client and server both send information to each other concurrently. 

 TELNET, RLOGIN, ZMODEM 

A hybrid protocol is also possible 



Protocol Design Issues
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Protocol design is difficult! 
Learn from examples 

Some issues

Protocol extendibility and versioning 

Byte order used for sending values 

ASCII vs. Binary protocol 

Synchronous vs. Asynchronous 

State

Timeouts


