
CS 580 Client-Server Programming
Spring Semester, 2007

Doc 5 Threads
Feb 8, 2007

Copyright ©, All rights reserved. 2007 SDSU & Roger Whitney, 5500 Campanile 
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.



References

2

The Java Programming Language, 2nd Ed. Arnold & Gosling, Addison-Wesley, 1998

The Java Language Specification, Gosling, Joy, Steele, Addison-Wesley, 1996, Chapter 17 
Threads and Locks.

Java 1.5.0 on-line documentation http://java.sun.com/j2se/1.5.0/docs/api/ 

Programming Ruby, 2'ed Thomas, Chapter 11 Threads and Processes, Thread class 
documentation (pp 633-639 or http://www.rubycentral.com/ref/ref_c_thread.html)

Reading

Java Network Programming, 3nd Ed., Harold, Chapter 5. (Java)

Programming Ruby, 2'ed Thomas, Chapter 11 Threads and Processes



Concurrent Programming

3

Safety

Liveness

Nondeterminism

Communication



Processes verses Threads

4

Processes (Heavy Weight)
Child process gets a copy of parent’s variables
Relatively expensive to start 
No concurrent access to variables

Thread (Light Weight Process)
Child process shares parents variables
Relatively cheap to start
Concurrent access to variables is an issue



Creating Threads by Inheritance

5

class  ExtendingThreadExample  extends Thread {
 public void run() {
  for  ( int  count = 0;  count < 4; count++)
   System.out.println( "Message " + count +
     " From: Mom" );
 }
  
 public static void main( String[]  args ) {
  ExtendingThreadExample  parallel  = 
   new ExtendingThreadExample();
  System.out.println( "Create the thread");
  parallel.start();
  System.out.println( "Started the thread " + parallel.getId() ););
  System.out.println( "End" );
 }
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 2 From: Mom
Message 3 From: Mom
Started the thread 7
End



Creating Threads by Composition

6

class  SecondMethod  implements  Runnable {
 public  void  run() {
  for  ( int  count = 0;  count < 4; count++)
   System.out.println( "Message " + count + 
      " From: Dad");
 }
 
 public static void main( String[]  args ) {
  SecondMethod  notAThread  = new SecondMethod();
  Thread  parallel  =  new Thread( notAThread );
 
  System.out.println( "Create the thread");
  parallel.start();
  System.out.println( "Started the thread" );
  System.out.println( "End" );
 }
}

Output
Create the thread
Message 0 From: Dad
Message 1 From: Dad
Message 2 From: Dad
Message 3 From: Dad
Started the thread
End



Thread with a Name

7

public class  WithNames  implements  Runnable {
 public  void  run() {
  for  ( int  count = 0;  count < 2; count++)
   System.out.println( "Message " + count +  
     " From: " + Thread.currentThread().getName() );
 }
 
 public static void main( String[]  args ) {
  Thread  a  =  new Thread(new WithNames(), "Mom" );
  Thread  b  =  new Thread(new WithNames(), "Dad" );
 
  System.out.println( "Create the thread");
  a.start();
  b.start();
  System.out.println( "End" );
 }
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 0 From: Dad
Message 1 From: Dad
End



Ruby Threads

8

a = Thread.new { 4.times {|k| puts k} }
a.join

Output
0
1
2
3

x = 5
a = Thread.new(x) do |size|
  size.times {|k| puts k}
end
a.join

Output
0
1
2
3
5



For Future Examples

9

public class  SimpleThread  extends Thread {
 private  int  maxCount =  32;
 
 public  SimpleThread(  String  name ) {
  super( name );
 }
 
 public  SimpleThread(  String  name, int repetitions ) {
  super( name );
  maxCount  =  repetitions;
 }
 
 public  SimpleThread(  int repetitions ) {
  maxCount  =  repetitions;
 }
 
 public  void run() {
  for  ( int  count = 0;  count < maxCount; count++) {
   System.out.println( count + " From: " + getName() );
  }
 }
}



Some Parallelism

10

public class  RunSimpleThread {
 public static void main( String[]  args ) {
  SimpleThread  first      = new SimpleThread( 5 );
  SimpleThread  second  = new SimpleThread( 5 );
  first.start();
  second.start();
  System.out.println( "End" );
 }
}

Output On Rohan 
End
0 From: Thread-0
1 From: Thread-0
2 From: Thread-0
0 From: Thread-1
1 From: Thread-1
2 From: Thread-1
3 From: Thread-0
3 From: Thread-1
4 From: Thread-0
4 From: Thread-1

Java on a Solaris machine with multiple processors can run threads on different processors



Ruby

11

a = Thread.new do
  5.times {|k| puts "a #{k}"}
end

b = Thread.new do 
  5.times {|k| puts "b #{k}"}
end
a.join
b.join

Output
a 0b 0

b 1a 1

b 2a 2

b 3
a 3b 4

a 4



Thread Scheduling

12

Priorities

Time-slicing



Priorities

13

Each thread has a priority

If there are two or more active threads
 If one has higher priority than others
 The higher priority thread is run until it is done or not active 

java.lang.Thread field Value

Thread.MAX_PRIORITY 10

Thread.NORM_PRIORITY 5

Thread.MIN_PRIORITY 0

Any float between
 -2147483649 
 2147483648

May be machine dependent 

Java Thread 
Priorities

Ruby Thread 
Priorities



Java Priority

14

public class  PriorityExample {
 public static void main( String[]  args ) {
  SimpleThread  first      = new SimpleThread( 5 );
  SimpleThread  second  = new SimpleThread( 5 );
  second.setPriority( 8 );
  first.start();
  second.start();
  System.out.println( "End" );
 }
}

On Single Processor
0 From: Thread-5
1 From: Thread-5
2 From: Thread-5
3 From: Thread-5
4 From: Thread-5
0 From: Thread-4
1 From: Thread-4
2 From: Thread-4
3 From: Thread-4
4 From: Thread-4
End 

On Multiple Processor Rohan
End
0 From: Thread-3
1 From: Thread-3
2 From: Thread-3
0 From: Thread-2
3 From: Thread-3
1 From: Thread-2
2 From: Thread-2
4 From: Thread-3
3 From: Thread-2
4 From: Thread-2



Ruby Priority

15

a = Thread.new do
  sleep
  5.times {|k| puts "a #{k}"}
end

b = Thread.new do
  sleep 
  5.times {|k| puts "b #{k}"}
end

b.priority=-1
a.priority=-2
a.run
sleep(0.003)
b.run

a.join
b.join

Output
a 0
b 0
b 1
b 2
b 3
b 4
a 1
a 2
a 3
a 4



Threads Run Once

16

public class RunOnceExample extends Thread {

 public void run() {

  System.out.println(  "I ran" );

 }

 

 public static void main( String args[] ) throws Exception {

  RunOnceExample onceOnly = new RunOnceExample();

  onceOnly.setPriority( 6 );

  onceOnly.start();

 

  System.out.println( "Try restart");

  onceOnly.start();

 

  System.out.println( "The End");

 }

}

Can't restart a thread

Causes Exception



Time-Slicing

17

A thread is run for a short time slice and suspended,
It resumes only when it gets its next "turn"

Threads of the same priority share turns

Non time-sliced threads run until:
 They end
 They are terminated
 They are interrupted
 Higher priority threads interrupts lower priority threads
 They go to sleep
 They block on some call
 Reading a socket
 Waiting for another thread

Java spec allows time-sliced or non-time-sliced threads 

Ruby docs don't talk about this



Testing for Time-slicing

18

public class  InfinityThread  extends Thread
 {
 public  void run()
  {
  while ( true )
   System.out.println(  "From: " + getName() );
  }
 
 public static void main( String[]  args )
  {
  InfinityThread  first      = new InfinityThread( );
  InfinityThread  second  = new InfinityThread( );
  first.start();
  second.start();
  }
 }

a = Thread.new do
  10.times {|k| puts "a #{k}"}
end

b = Thread.new do 
  10.times {|k| puts "b #{k}"}
end
a.join
b.join

If time-sliced output will be mixed



Java user & daemon Threads

19

Daemon thread
Expendable 
When all user threads are done
 the program ends 
 all daemon threads are stopped

User thread
Not expendable
Execute until 
 Their run method ends or 
 An exception propagates beyond the run 
method.



When a Java Program Ends

20

Runtime.exit(int) has been called and the security manager permits the exit 
operation to take place.

or

Only daemon threads are running



Daemon Example

21

public class DaemonExample extends Thread {
 public  static  void  main( String  args[] ) {
  DaemonExample  shortLived      = new DaemonExample( );
  shortLived.setDaemon( true );
  shortLived.start();
  System.out.println( "Bye");
 }
 
 public  void run() {
  while (true) {
   System.out.println(  "From: " + getName()  );
   System.out.flush();
  }
 }
}

Output
From: Thread-0 (Repeated many times)
Bye
From: Thread-0 (Repeated some more, then the program ends)



Ruby Threads are daemon threads

22

Using Java terminology all Ruby threads are daemon threads



Thread States

23

Executing

Only one thread per processor can be running at a time

Runnable

A thread is ready to run but is not currently running

Not Runnable

A thread that is suspended or waiting for a resource



Yield

24

public class  YieldThread  extends Thread {

 public  void run() {

  for  ( int  count = 0;  count < 4; count++) {

   System.out.println( count + " From: " + getName() );

   yield();

  }

 }

 

 public static void main( String[]  args )  {

  YieldThread  first      = new YieldThread();

  YieldThread  second  = new YieldThread();

  first.setPriority( 1);

  second.setPriority( 1);

  first.start();

  second.start();

  System.out.println( "End" );

 }

}

Output (Explain this)
0 From: Thread-0
0 From: Thread-1
1 From: Thread-0
1 From: Thread-1
2 From: Thread-0
2 From: Thread-1
3 From: Thread-0
End
3 From: Thread-1

Allow another thread of the same priority to run
Thread is still runable



Ruby pass

25

a = Thread.new do
  10.times do |k| 
    puts "a #{k}"
    Thread.pass
  end
end

b = Thread.new do 
  10.times do |k| 
    puts "b #{k}"
  end
end
a.join
b.join

Output
a 0b 0

b 1a 1

b 2a 2

b 3
a 3b 4

a 4b 5

b 6a 5

b 7a 6

b 8a 7
b 9

a 8
a 9

Allow another thread of the same priority to run
Thread is still runable



Java sleep

26

public class  NiceThread  extends Thread {
 public void run() {
  try {
   System.out.println( "Thread started");
   sleep( 5 );
   System.out.println(  "From: " + getName()  );
   System.out.println( "Clean up operations" );
  }
  catch ( InterruptedException interrupted ) {
   System.out.println( "In catch" );
  }  
 }
     
 public static void main( String args[] )  {
  NiceThread  missManners  = new NiceThread( );
  missManners.start();
  System.out.println( "Main after start" );
 }
}

Output
Thread started
Main after start
From: Thread-0
Clean up operations

Put calling thread in not-runnable state for specified milliseconds



Java sleep

27

public class  NiceThread  extends Thread {
 public void run() {
  System.out.println( "Thread started");
  System.out.println(  "From: " + getName()  );
  System.out.println( "Clean up operations" );
 }
     
 public static void main( String args[] ) throws InterruptedException  {
  NiceThread  missManners  = new NiceThread( );
  missManners.start();
  missManners.sleep(50);  //Who is sleeping
  System.out.println( "Main after start" ); 
 }
}

Output
Thread started
From: Thread-0
Clean up operations
Main after start

Put calling thread in not-runnable state for specified milliseconds



Ruby sleep

28

a = Thread.new do
  sleep
  5.times {|k| puts "a #{k}"}
end

b = Thread.new do
  sleep 
  5.times {|k| puts "b #{k}"}
end

b.priority=-1
a.priority=-2
a.run
sleep(0.003)
b.run

a.join
b.join

Put calling thread in not-runnable state for specified 
seconds

Time can be a float

sleep(0) & sleep put thread to sleep indefinitely 



Java deprecated Thread methods

29

The following Thread methods are not thread safe

suspend
resume
stop
destroy



Ruby exit & kill Class Methods

30

count = 0
a = Thread.new { loop { count += 1}}
sleep(0.1)
Thread.kill(a)
puts count
puts a.alive?

Output
56946
false

count = 0
a = Thread.new do
  loop do
    count += 1
    Thread.exit if count > 5000
  end 
sleep(0.1)
puts count
puts a.alive?

Output
5000
false

exit -Terminate current threadkill -Terminate given thread



Ruby exit, kill, terminate - Instance Methods

31

count = 0
a = Thread.new { loop { count += 1}}
sleep(0.1)
a.kill
puts count
puts a.alive?

count = 0
a = Thread.new { loop { count += 1}}
sleep(0.1)
a.exit
puts count
puts a.alive?

count = 0
a = Thread.new { loop { count += 1}}
sleep(0.1)
a.terminate
puts count
puts a.alive?

exit, kill, terminate -> same as Thread.kill


