
CS 635 Advanced Object-Oriented Design &
Programming

Spring Semester, 2007
Doc 9 Object Coupling

Feb 22, 2007
Copyright ©, All rights reserved. 2007 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

References

2

Object Coupling and Object Cohesion, chapter 7 of Essays on Object-Oriented
Software Engineering, Vol. 1, Berard, Prentice-Hall, 1993, pp 92-111

3

Object Coupling

Interface Coupling Internal Coupling

Inside Internal
 Coupling

Outside Internal
 Coupling

From Underneath
From the

side

Internal Coupling & Cohesion

4

Internal Coupling
Physical relationships among the items that comprise an object

Cohesion
Logical relationships among the items that comprise an object

Interface Coupling

5

One object refers to another specific object, and the original object
makes direct references to one or more items in the specific object's
public interface

Includes module coupling already covered

Weakest form of object coupling, but has wide variation

Issues
 Object abstraction decoupling
 Selector decoupling
 Constructor decoupling
 Iterator decoupling

Object Abstraction Decoupling

6

Assumptions that one object makes about a category of other objects are isolated and
used as parameters to instantiate the original object.

C++/Java 1.5 Example

class LinkedListCell {
 int cellItem;
 LinkedListCell* next;

 // code can now use fact that cellItem is an int
 if (cellItem == 5) print("We Win");
}

template <class type>
class LinkedListCell#2 {
 type cellItem;
 LinkedListCell* next;

 // code does not know the type, it is just a cell item,
 // it becomes an abstraction
}

Selector Decoupling

7

Counter Example
class Counter{
 int count = 0;

 public void increment() { count++; }
 public void reset() { count = 0; }
 public void display() {
 Java Swing code to display the counter
 in a slider bar
}

Selector Decoupled
class Counter{
 int count = 0;

 public void increment() { count++; }
 public void reset() { count = 0; }
 public int count() {return count;}
 public String toString() {return String.valueOf(count);}
}

Counter

Primitive Methods

8

Any method that cannot be implemented simply, efficiently, and reliably
without knowledge of the underlying implementation of the object

Functionally cohesive, they perform a single specific function

Small, seldom exceed five "lines of code"

Types

Selectors (get operations)
Constructors (not the same as class constructors)
Iterators

 Composite method

9

Any method constructed from two or more primitive methods

sometimes from different objects

Selectors

10

Return state information about their encapsulated object and
Do not alter the state of their encapsulated object

public void display() {
 Swing GUI code to display the counter
}

public String toString() {return String.valueOf(count);}

Selector
decoupling

Primitive Objects

11

Primitive objects are objects that are both:

 Defined in the standard for the implementation language
 Globally known

Primitive objects don't count in coupling with other objects

Why not?

Constructors

12

class Calendar {
 public void getMonth(from where, or what) { blah }
}

class Calendar {
 public static Calendar fromString(String date) { blah}
}

Operations that construct a new, or altered version of an object

Composite Object

13

Object conceptually composed of two or more objects

Heterogeneous Composite Object

Object conceptually composed from objects which are not all conceptually the same

class Date{
 int year;
 int month;
 int day;
}

Homogeneous Composite Object

Object conceptually composed from objects which are all conceptually the same

list of names - each item is a member of the same general category of object – a name

Iterator

14

Allows the user to visit all the nodes in a homogeneous composite object
and to perform some user-supplied operation at each node

15

Object Coupling

Interface Coupling Internal Coupling

Inside Internal
 Coupling

Outside Internal
 Coupling

From Underneath
From the

side

Inside Internal Object Coupling

16

Coupling between state and operations of an object

The big issue: Accessing state

Changing the structure of the state of an object requires changing all
operations that access the state including operations in subclasses

Solution: Access state via access operations

C++ implementation
 Provide private functions to access and change each data member

Outside Internal Coupling from Underneath

17

Coupling between a class and subclass involving private state and private
operations

Major Issues

Access to inherited state
 Direct access to inherited state
 Access via operations

Unwanted Inheritance

 Parent class may have operations and state not needed by subclass

Outside Internal Coupling from the Side

18

Class A accesses private state or private operations of
class B

Class A and B are not related via inheritance

Main causes

Using non-object-oriented languages
Special language "features"
C++ friends

