
CS 635 Advanced Object-Oriented Design &
Programming

Spring Semester, 2006
Doc 16 Prototype

Apr 17, 2007
Copyright ©, All rights reserved. 2007 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

References

2

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, 1995, pp. 117-126

The Design Patterns Smalltalk Companion, Alpert, Brown, Woolf, Addision-Wesley, 1998, pp.
77-90

Java API

Prototype-based Languages
 http://en.wikipedia.org/wiki/Prototype-based_programming
 JavaScript The Definite Guide 4'th Ed, Flanagan, O'Reilly Press, 2002

3

Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype

Applicability

Use the Prototype pattern when

A system should be independent of how its products are created, composed, and
represented; and

When the classes to instantiate are specified at run-time; or

To avoid building a class hierarchy of factories that parallels the class hierarchy of
products; or

When instances of a class can have one of only a few different combinations of
state.

Prototype

Insurance Example

4

Insurance agents start with a standard policy and customize it

Two basic strategies:

Copy the original and edit the copy

Store only the differences between original and the customize version in
a decorator

Copying Issues

5

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects

Shallow Copy Verse Deep Copy

6

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom
*

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

Original Objects

Deep Copy

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

aChair

aTable

Deeper Copy

Cloning Issues - C++ Copy Constructors

7

class Door {
 public:
 Door();
 Door(const Door&);
 virtual Door* clone() const;

 virtual void Initialize(Room*, Room*);
 // stuff not shown
 private:
 Room* room1;
 Room* room2;
 }

Door::Door (const Door& other) //Copy constructor {
 room1 = other.room1;
 room2 = other.room2;
 }

Door* Door::clone() const {
 return new Door(*this);
 }

Cloning Issues - Java Clone

8

Shallow Copy
class Door implements Cloneable {
 private Room room1;
 private Room room2;

 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
}

Deep Copy
public class Door implements Cloneable {
 private Room room1;
 private Room room2;

 public Object clone() throws CloneNotSupportedException {
 Door thisCloned =(Door) super.clone();
 thisCloned.room1 = (Room)room1.clone();
 thisCloned.room2 = (Room)room2.clone();
 return thisCloned;
 }
}

Prototype-based Languages

9

No classes

Behaviour reuse (inheritance)
 Cloning existing objects which serve as prototypes

Some Prototype-based languages

 Self
 JavaScript
 Squeak (eToys)
 Perl with Class::Prototyped module

JavaScript Example

10

Circle.prototype.pi = 3.14159;

function Circle_circumference() {
 return 2 * this.pi * this.r;
}
Circle.prototype.circumference = Circle_circumference;

function Circle(x, y, r) {
 this.x = x;
 this.y = y;
 this.r = r
}

var center = new Circle(0.0, 0.0, 1.0);
print(center.circumference());

Circle.prototype.area = function() {return this.pi * this.r * this.r; }
print(center.area());

center.color = "red";

