
CS 635 Advanced Object-Oriented Design &
Programming

Spring Semester, 2007
Doc 4 Visitor
Feb 8, 2007

Copyright ©, All rights reserved. 2007 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

References

2

Design Patterns: Elements of Resuable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp.
331-344

Magritte Meta-Described Web Application Development, Lukas
Renggli, June 2006, Master Thesis Universität Bern, http://
www.iam.unibe.ch/~scg/Archive/Diploma/Reng06a.pdf

3

Binary Search Tree Assignment

 Print out the elements that end in either an 'a' or an 'e' in alphabetic order.

How to satisfy the requirements and still maintain BST abstraction?

Visitor

4

Intent

Represent an operation to be performed on the
elements of an object structure

Visitor lets you define a new operation without
changing the classes of the elements on which it
operates

Tree Example

5

class Node { ... }

class BinaryTreeNode extends Node {...}

class BinaryTreeLeaf extends Node {...}

Tree Example

6

class BinaryTreeNode extends Node {

 public void accept(Visitor aVisitor) {

 aVisitor.visitBinaryTreeNode(this);

 }

}

class BinaryTreeLeaf extends Node {

 public void accept(Visitor aVisitor) {

 aVisitor.visitBinaryTreeLeaf(this);

 }

}

abstract class Visitor {

 abstract void visitBinaryTreeNode(BinaryTreeNode);

 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);

}

class HTMLPrintVisitor extends Visitor {

 public void visitBinaryTreeNode(BinaryTreeNode x) {

 HTML print code here

 }

 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}

}

Put operations into separate object - a visitor

Pass the visitor to each element in the structure

The element then activates the visitor

Visitor performs its operation on the element

Each visitX method only deals with on type of element

Tree Example

7

Visitor

Double Dispatch

8

Note that a visit to one node requires two method calls

 Node example = new BinaryTreeLeaf();
 Visitor traveler = new HTMLPrintVisitor();
 example.accept(traveler);

example.accept() calls aVisitor.visitBinaryTreeNode(this);

The first method selects the correct method in the Visitor class

The second method selects the correct Visitor class

Issue - Who does the traversal?

9

Visitor

Elements in the Structure

Iterator

What is Wrong with This?

10

class Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visit(this);
 }
}

abstract class Visitor {
 abstract void visit(Node);
}

class HTMLPrintVisitor extends Visitor {
 public void visit(Node x) {
 if x is BinaryTreeNode {
 blah
 }
 else if x is BinaryTreeLeaf {
 more blah
 }
 }
}

When to Use the Visitor

11

Have many classes of objects with differing interfaces, and you want to perform
operations on these objects that depend on their concrete classes

When many distinct and unrelated operations need to be preformed on objects in
an object structure and you want to avoid cluttering the classes with these
operations

When the classes defining the structure rarely change, but you often want to
define new operations over the structure

Consequences

12

Visitors makes adding new operations easier

Visitors gathers related operations, separates
unrelated ones

Adding new ConcreteElement classes is hard

Visiting across class hierarchies

Accumulating state

Breaking encapsulation

Avoiding the accept() method

13

Visitor pattern requires elements to have an accept method

Sometimes this is not possible

 You don’t have the source for the elements

Aspect Oriented Programming

AspectJ eleminates the need for an accept method in aspect oriented Java

AspectS provides a similar process for Smalltalk

Why not use one of this instead of the Visitor?

14

package example;

class BinaryTree {

 public Iterator iterator() {...}

 ...

}

class DoFoo {

 Iterator elements;

 public DoFoo(BinaryTree tree) {

 elements = tree.iterator();

 }

 public void doIt() {

 while (elements.hasNext()) {

 Integer next = (Integer) elements.next
();

 do foo here with next

 }

}

Magritte

15

Web applications have data (domain models)

We need to
 Display the data
 Enter the data
 Validate data
 Store Data

Magritte

16

For each field in a domain model (class) provide a description

Description contains
 Data type Display string
 Field name Constraints

descriptionFirstName
 ^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)
 beRequired;
 yourself.

descriptionBirthday
 ^ (MADateDescription auto: 'birthday' label: 'Birthday' priority: 70)
 between:(Date year: 1900) and:Datetoday;
 yourself

Magritte

17

Each domain model has a collection of descriptions

Different visitors are used to

 Generate html to display data

 Generate form to enter the data

 Validate data from form

 Save data in database

Sample Page

18

 editor := (Person new asComponent)
 addValidatedSwitch;
 yourself.
 result := self call: editor.

