
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2011

Doc 10 Cohesion
March 1, 2009

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Tuesday, March 1, 2011

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Reference

2

Object Coupling and Object Cohesion, chapter 7 of Essays on Object-Oriented Software
Engineering, Vol 1, Berard, Prentice-Hall, 1993,

Tuesday, March 1, 2011

3

Some review

Tuesday, March 1, 2011

Question

4

Using your favorite OO programming language (Java, C++, Ruby, etc) in which
class would you place the following method?

A reverse method that reverses the order of the characters in a string.

Tuesday, March 1, 2011

Cohesion

5

"Cohesion is the degree to which the tasks performed by a single module
are functionally related."

 IEEE, 1983

"Cohesion is the "glue" that holds a module together. It can be thought of
as the type of association among the component elements of a module.
Generally, one wants the highest level of cohesion possible."

 Bergland, 1981

"A software component is said to exhibit a high degree of cohesion if the
elements in that unit exhibit a high degree of functional relatedness. This
means that each element in the program unit should be essential for that
unit to achieve its purpose."

 Sommerville, 1989

Tuesday, March 1, 2011

C - Version

6

char* reverse(char *aString)
{

int stringLength = strlen(aString);
char reverse[stringLength + 1];
for (k = 0; k < stringLength; k++)

reverse[k] = aString[stringLength-k-1]
return reverse;

}

Is this OO?

Tuesday, March 1, 2011

Some details may be incorrect in the code, but that is not the issue here

C++

7

class MyString
{

public static char* reverse(char *aString);
}

char* MyString :: reverse(char *aString)
{

int stringLength = strlen(aString);
char reverse[stringLength + 1];
for (k = 0; k < stringLength; k++)

reverse[k] = aString[stringLength-k-1]
return reverse;

}

Is this OO?

Tuesday, March 1, 2011

Java

8

Is this OO?

class MyString
{

public static String reverse(String toReverse)
{

StringBuilder string = new StringBuilder(toReverse);
StringBuilder reverse = string.reverse();
return reverse.toString();

}

Tuesday, March 1, 2011

Java

9

Is this OO?

class MyString
{

public String reverse(String toReverse)
{

StringBuilder string = new StringBuilder(toReverse);
StringBuilder reverse = string.reverse();
return reverse.toString();

}

Tuesday, March 1, 2011

Some Heuristics

10

A class should capture one and only one key abstraction

Keep related data and behavior in one place

Beware of classes that have many accessor method in their public interface

Tuesday, March 1, 2011

11

Cohesion

Tuesday, March 1, 2011

Types of Module Cohesion

12

Coincidental (worst)

Logical

Temporal

Procedural

Communication

Sequential

Functional (best)

Tuesday, March 1, 2011

Coincidental Cohesion

13

Little or no constructive relationship among the elements of the module

Common Object Occurrence

Object does not represent any single object-oriented concept

Collection of commonly used source code as a class inherited via multiple
inheritance

class Rous{
 public static int findPattern(String text, String pattern) { // blah}

 public static int average(Vector numbers) { // blah}

 public static OutputStream openFile(String fileName){ // blah}
 }

Tuesday, March 1, 2011

Logical Cohesion

14

Module performs a set of related functions, one of which is selected via function
parameter when calling the module

Cure – Isolate each function into separate operations

public void sample(int flag){
 switch (flag){
 case ON:
 // bunch of on stuff
 break;
 case OFF:
 // bunch of off stuff
 break;
 case CLOSE:
 // bunch of close stuff
 break;
 case COLOR:
 // bunch of color stuff
 break;
 }
}Tuesday, March 1, 2011

Temporal Cohesion

15

Elements are grouped into a module because they are all processed within the same
limited time period

Common example

"Initialization" modules that provide default values for objects
"End of Job" modules that clean up

procedure initializeData() {
 font = "times";
 windowSize = "200,400";
 foo.name = "Not Set";
 foo.size = 12;
 foo.location = "/usr/local/lib/java";
 }

Cure – Each object should have a constructor and destructor

 How is this better?

Tuesday, March 1, 2011

Temporal Cohesion

16

Cure
Each object should have a constructor and destructor

How is this better?

Tuesday, March 1, 2011

Procedural Cohesion

17

Groups processing elements based on procedural or algorithmic relationships

Procedural modules are application specific

In context the module seems reasonable

Outside the context modules seem strange and very hard to understand

Can not understand module without understanding the program and the
conditions existing when module is called

Makes module hard to modify, understand

Tuesday, March 1, 2011

18

Class Builder verse Program writer

Tuesday, March 1, 2011

Communication Cohesion

19

Operations of a module all operate upon the same input data set and/or produce the
same output data

Cure - Isolate each element into separate modules

Rarely occurs in object-oriented systems due to polymorphism (overloading)

Tuesday, March 1, 2011

Sequential Cohesion

20

Sequential association the type in which the output data from one processing
element serve as input data for the next processing element

A module that performs multiple sequential functions where the sequential
relationship among all of the functions is implied by the problems or
application statement and where there is a data relationship among all of the
functions

Cure – Decompose into smaller modules

Tuesday, March 1, 2011

Functional Cohesion

21

If the operations of a module can be collectively described as a single specific
function in a coherent way, the module has functional cohesion

If not, the module has lower type of cohesion

In an object-oriented system:

 Each operation in public interface of an object should be functional cohesive

 Each object should represent a single cohesive concept

Tuesday, March 1, 2011

Informational Strength Cohesion

22

Myers states:

"The purpose of an informational-strength module is to hide some concept, data
structure, or resource within a single module.

An informational-strength module has the following definition:

It contains multiple entry points

Each entry point performs a single specific function

All of the functions are related by a concept, data structure, or resource that
is hidden within the module"

Tuesday, March 1, 2011

23

Object Cohesion

Tuesday, March 1, 2011

Object Cohesion

24

The degree to which components of a class are tied together

Evaluating cohesion requires:

Technical knowledge of the application domain

Some experience in building, modifying, maintaining, testing and managing
applications in the appropriate domain

Technical background in and experience with reusability

Tuesday, March 1, 2011

Questions to probe cohesiveness of an object

25

Does the object represent a complete and coherent concept or does it more closely
resemble a partial concept, or a random collection of information?

Does the object directly correspond to a "real world entity," physical or logical?

Is the object characterized in very non-specific terms?
 Collection of data, statistics, etc.

Do each of the methods in the public interface for the object perform a single
coherent function?

If the object (or system of objects) is removed from the context of the immediate
application, does it still represent a coherent and complete object-oriented
concept?

Tuesday, March 1, 2011

Questions to probe cohesiveness of system of
objects

26

Does the system represent an object-oriented concept?

Do all the objects directly support, or directly contribute to the support of, the
object-oriented concept that the system represents?

Are there missing objects?

Tuesday, March 1, 2011

Objects in Isolation

27

Isolation means without considering any hierarchy that may contain the
object or class

Tuesday, March 1, 2011

Individual Objects

28

A primitive method is any method that cannot be implemented simply, efficiently, and
reliably without knowledge of the underlying implementation of the object

A composite method is any method constructed from two or more primitive methods –
sometimes from different objects

A sufficient set of primitive methods for an object is a minimum set of primitive
methods to accomplish all necessary work with on the object

A sufficient set of primitive methods has two major problems:

Some tasks may be awkward and/or difficult with just a sufficient set of primitive
methods

A sufficient set of primitive methods may not allow us to fully capture the
abstraction represented by the object

A complete set of primitive methods is a set of primitive methods that both allows us
to easily work with the object, and fully captures the abstraction represented by the
object.

Tuesday, March 1, 2011

To implement Java Collection

29

Subclass java.util.AbstractList and implement
add(int index, Object element)
get(int index)
remove(int index)
size()
set(int index, Object element)

Subclass java.util.AbstractCollection and implement
add(int index, Object element)
iterator()
size()

Iterator implements
 hasNext()
 next()
 remove()

Is either of these a sufficient set of primitive
methods?

Tuesday, March 1, 2011

Java's ArrayList

30

add(int index, Object element) add(Object o) addAll(Collection c)

addAll(int index, Collection c) clear() clone()

contains(Object elem) containsAll ensureCapacity(int minCapacity)

equals get(int index) hashCode

indexOf(Object elem) isEmpty() iterator

lastIndexOf(Object elem) listIterator remove(int index)

removeAll retainAll set(int index, Object element)

size() subList toArray()

toArray(Object[] a) toString trimToSize()

Is this a complete set of primitive methods?

Tuesday, March 1, 2011

Ruby Array

31

- & * [] []= |

+ << <=> == abbrev all?

any? assoc at clear collect collect!

compact compact! concat delete delete_at delete_if

detect each each_index each_with_index empty? entries

eql? fetch fill find find_all first

flatten flatten! frozen? grep hash include?

index indexes indices initialize_copy inject insert

inspect join last length map map!

max member? min nitems pack partition

pop push rassoc reject reject! replace

reverse reverse! reverse_each rindex select shift

size slice slice! sort sort! sort_by

to_a to_ary to_s to_set transpose uniq

uniq! unshift values_at zip

Tuesday, March 1, 2011

Smalltalk OrderedCollection 1

32

, = add: add:after: add:before:

add:beforeIndex: addAll: addAllFirst: addAllLast: addFirst:

addLast: addLastNoCheck: after: allButFirst: allButLast:

allSatisfy: anySatisfy: asArray asBag asFixedArgument

asList asOrderedCollection asSet asSortedCollection asSortedCollection:

asSortedStrings asSortedStrings: asSortedStrings:with: asSortedStringsWith: at:

at:put: atAll:put: atAllPut: before: capacity

changeCapacityTo: changeSizeTo: collect: contains: copyEmpty

copyEmpty: copyFrom:to: copyReplaceAll:with: copyReplaceFrom:to:with: copyUpTo:

copyWith: copyWithout: detect: detect:ifNone: do:

do:separatedBy: doWithIndex: emptyCheck emptyCollectionError errorOutOfBounds

find: findFirst: findFirst:startingAt: findLast: first

first: firstObjectError fold: forStackDumpPrintUsing: groupedBy:

grow growSize growToAtLeast: hash identityIndexOf:

includes: identityIndexOf:ifAbsent:
identityIndexOf:from:to:
ifAbsent:

Tuesday, March 1, 2011

Smalltalk OrderedCollection 2

33

increaseCapacity indexOf: indexOf:ifAbsent: inject:into: insert:before:

inspectorClass inspectorClasses isEmpty isNotEmpty isSameSequenceAs:

isSequenceable isWeakContainer isWeakContainer: keysAndValuesDo: last

last: lastIndexOf: lastIndexOf:ifAbsent: lastObjectError literalArrayEncoding

makeRoomAtFirst makeRoomAtLast maxPrint newReadWriteStream nextIndexOf:from:to:

noMatchError noSuchElementError notEmpty notEnoughElementsError notFoundError

notKeyedError occurrencesOf: piecesCutWhere: piecesCutWhere:do: prevIndexOf:from:to:

writeStream printOn: readStream readWriteStream reject:

remove: remove:ifAbsent: removeAll: removeAllSuchThat: removeAtIndex:

removeFirst removeFirst: removeIndex: removeLast removeLast:

replaceAll:with: replaceAll:with:from:to: replaceFrom:to:with: replaceFrom:to:with:startingAt: representBinaryOn:

reverse reverseDo: runsFailing: runsFailing:do: runsSatisfying:

runsSatisfying:do: select: setIndices setIndicesFrom: size

storeOn: swap:with: tokensBasedOn: trim with:do:

printBriefInspectorTextOn:

Tuesday, March 1, 2011

Smalltalk OrderedCollection 3

34

decrementBy:boundedBy:highValue:wrapAround:
startingAt:replaceElementsIn:from:to:
replaceElementsFrom:to:withArray:startingAt:
replaceElementsFrom:to:withByteArray:startingAt:
replaceElementsFrom:to:withByteEncodedString:startingAt:
replaceElementsFrom:to:withCharacterArray:startingAt:
replaceElementsFrom:to:withIntegerArray:startingAt:
replaceElementsFrom:to:withLinkedList:startingAt:
replaceElementsFrom:to:withSequenceableCollection:startingAt:
replaceElementsFrom:to:withTwoByteString:startingAt:
replaceElementsFrom:to:withWordArray:startingAt:
indexOfSubCollection:startingAt:
indexOfSubCollection:startingAt:ifAbsent:
incrementBy:boundedBy:lowValue:wrapAround:

Tuesday, March 1, 2011

Levels of Cohesion

35

An object is not as cohesive as it could be if the public interface contains:

Only primitive methods, but does not fully capture the abstraction represented by the
object

Primitive and composite methods, but does not fully capture the abstraction represented
by the object

A sufficient set of primitive methods with composite methods

No primitive methods, just composite methods

Note

Objects with a sufficient set of primitive methods with composite methods is more
cohesive than objects with out a sufficient set of primitive methods

All public methods must directly support the abstraction represented by the object. The
methods must make sense when object is removed from the application

Tuesday, March 1, 2011

Composite Objects

36

A composite object is an object that is conceptually composed of two, or more, other
objects, which are externally discernible.

Component objects are those that make up the composite object.

Component objects are externally discernible if

The externally discernible state of the object is directly affected by the presence or
absence of one or more component objects

Component objects can be directly queried or changed via methods in the public
interface of the composite object and/or

Tuesday, March 1, 2011

Ranking of Cohesion of Composite Objects
Increasing order of Goodness

37

Externally discernible component objects not related

Some externally discernible component objects are related, the group component
objects does not make sense

The group component objects does not represent a single stable object-oriented
concept, but are all bound together some how in an application

A majority of the externally discernible component objects support a single,
coherent, object-oriented concept, but at least one does not

All of the externally discernible component objects support a single, coherent,
object-oriented concept, but at least one needed is missing

All of the externally discernible component objects support a single, coherent,
object-oriented concept, and none are missing

Tuesday, March 1, 2011

Accessing Cohesion of an Individual Object

38

Assessment of the public methods/public non-methods/component objects

Are all the items appropriate for the given object?

Do we have at least a minimally sufficient set of items?

Do we have extra or application-specific items?

Tuesday, March 1, 2011

