
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2011

Doc 8 Decorator & Command
Feb 22, 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Tuesday, February 22, 2011

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Design Patterns: Elements of Resuable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 175-184, 233-242

Pattern-Oriented Software Architecture: A System of Patterns, Buschman, Meunier, Rohnert,
Sommerlad, Stal, 1996, pp. 277-290, Command Processor

Command Processor, Sommerlad in Pattern Languages of Program Design 2, Eds. Vlissides,
Coplien, Kerth, Addison-Wesley, 1996, pp. 63-74

Photographs used with permission from www.istockphoto.com

Tuesday, February 22, 2011

3

Decorator

Tuesday, February 22, 2011

Prime Directive
Data + Operations

4

Tuesday, February 22, 2011

Decorator Pattern

5

Tuesday, February 22, 2011

Adds responsibilities to individual objects

 Dynamically
 Transparently

6

Tuesday, February 22, 2011

import java.io.*;
import sdsu.io.*;
class ReadingFileExample
 {
 public static void main(String args[]) throws Exception
 {
 FileInputStream inputFile;
 BufferedInputStream bufferedFile;
 ASCIIInputStream cin;

 inputFile = new FileInputStream("ReadingFileExample.java");
 bufferedFile = new BufferedInputStream(inputFile);
 cin = new ASCIIInputStream(bufferedFile);

7

Tuesday, February 22, 2011

ConcreteDecoratorB

Component
operation()

Decorator

operation()
component

ConcreteComponent
operation()

ConcreteDecoratorA

8

Tuesday, February 22, 2011

9

Tuesday, February 22, 2011

aDecorator
component aComponent

aDecorator
component

Decorator forwards all component operations

10

Tuesday, February 22, 2011

11

Favor Composition over Inheritance

Tuesday, February 22, 2011

Refactoring: Move Embellishment to Decorator

12

Client aBinaryTree
toArray

Client aBinaryTree
toArray

anOddValueDecorator

toArray

Tuesday, February 22, 2011

Benefits & Liabilities

13

Simplifies a class
Distinguishes a classes core responsibilities from embellishments

Changes the object identity of a decorated object
Code harder to understand and debug
Combinations of decorators may not work correctly together

Benefits

Liabilities

Tuesday, February 22, 2011

14

Command

Tuesday, February 22, 2011

Command

15

Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Example
Invoker be a menu
Client be a word processing program
Receiver a document
Action be save

Encapsulates a request as an object

Tuesday, February 22, 2011

When to Use the Command Pattern

16

Need action as a parameter (replaces callback functions)

Specify, queue, and execute requests at different times

Undo

Logging changes

High-level operations built on primitive operations

 A transaction encapsulates a set of changes to data

 Systems that use transaction often can use the command
pattern

Macro language

Tuesday, February 22, 2011

Callback Function vs Command

17

Command contains reference to object that it acts on

Tuesday, February 22, 2011

Consequences

18

Command decouples the object that invokes the operation from the one that knows how
to perform it

It is easy to add new commands, because you do not have to change existing classes

You can assemble commands into a composite object

Tuesday, February 22, 2011

Refactoring: Replace Conditional Dispatcher
with Command

19

public class SDSUChatServer {
public void processClientRequest(String request) {

blah
if (command.equals("quit"))

quit();
else if (command.equals("register"))

registerNewUser(commandData);
else if (command.equals("login"))

login(commandData);
else if (command.equals("nickname"))

checkNickname(commandData);
blah

}

action = actions.get(command);
action.execute(commandData);

Tuesday, February 22, 2011

Refactoring to Patterns, Kerievsky, pp 191-201

Sample Command

20

public class RegisterCommand extends Command {
private SDSUChatServer target;

public RegisterCommand(SDSUChatServer aServer) {
target = aServer;

}

public void execute(String commandData) {
target.registerNewUser(commandData);

}
}

bad example do not use

Tuesday, February 22, 2011

The actions table

21

public class SDSUChatServer {
private HashMap<String, Command> actions;

private populateActions() {
actions = new HashMap<String, Command>();
actions.put("quit", new QuitCommand(this));
actions.put("register", new RegisterCommand(this));
actions.put("login", new LoginCommand(this));
actions.put("nickname", new NicknameCommand(this));

}

Tuesday, February 22, 2011

When to do this?

22

Need runtime flexibility

Conditional Dispatcher is bloated

Tuesday, February 22, 2011

Pluggable Commands

23

Can create one general Command using reflection

Don’t hard code the method called in the command

Pass the method to call an argument

Tuesday, February 22, 2011

Java Example of Pluggable Command

24

import java.util.*;
import java.lang.reflect.*;

public class Command
 {
 private Object receiver;
 private Method command;
 private Object[] arguments;

 public Command(Object receiver, Method command,
 Object[] arguments)
 {
 this.receiver = receiver;
 this.command = command;
 this.arguments = arguments;
 }

 public void execute() throws InvocationTargetException,
 IllegalAccessException
 {
 command.invoke(receiver, arguments);
 }
 }

Tuesday, February 22, 2011

Using the Pluggable Command

25

public class Test {
 public static void main(String[] args) throws Exception
 {
 Vector sample = new Vector();
 Class[] argumentTypes = { Object.class };
 Method add =
 Vector.class.getMethod("addElement", argumentTypes);
 Object[] arguments = { "cat" };

 Command test = new Command(sample, add, arguments);
 test.execute();
 System.out.println(sample.elementAt(0));
 }
 }

Output
cat

Tuesday, February 22, 2011

26

Command Processor Pattern

Tuesday, February 22, 2011

Command Processor Pattern

27

Command Processor manages the command objects

The command processor:

 Contains all command objects

 Schedules the execution of commands

 May store the commands for later unto

 May log the sequence of commands for testing purposes

 Uses singleton to insure only one instance

Tuesday, February 22, 2011

Structure

28

Client

Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Command

Processor

commandStack

doIt(command)
undoIt()

creates

transfer
command

performs

stores

Tuesday, February 22, 2011

Dynamics

29

Command
ProcessorClient

MakeBold
Command

Document

request

undo
request undoIt() undo()

delete()

restoreText()

getSelection()

makeBold()

do()
doIt()

create()

makeBold
command

Tuesday, February 22, 2011

Benefits

30

Flexibility in the way requests are activated

 Different user interface elements can generate the same kind of command object

 Allows the user to configure commands performed by a user interface element

Flexibility in the number and functionality of requests

 Adding new commands and providing for a macro language comes easy

Programming execution-related services

 Commands can be stored for later replay
 Commands can be logged
 Commands can be rolled back

Testability at application level

Concurrency

 Allows for the execution of commands in separate threads

Tuesday, February 22, 2011

Liabilities

31

Efficiency loss

Potential for an excessive number of command classes

 Try reducing the number of command classes by:

 Grouping commands around abstractions
 Unifying simple commands classes by passing the receiver object as a
parameter

Complexity

 How do commands get additional parameters they need?

Tuesday, February 22, 2011

