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Decorator
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Prime Directive
Data + Operations
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Decorator Pattern
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Adds responsibilities to individual objects

 Dynamically 
 Transparently 
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import java.io.*;
import sdsu.io.*;
class  ReadingFileExample
 {
 public  static  void  main( String  args[]  ) throws Exception
  {
  FileInputStream inputFile;
  BufferedInputStream bufferedFile;
  ASCIIInputStream  cin;
   
  inputFile = new FileInputStream( "ReadingFileExample.java" );
  bufferedFile = new BufferedInputStream( inputFile );
  cin = new ASCIIInputStream( bufferedFile );

7

Tuesday, February 22, 2011



ConcreteDecoratorB

Component
operation()

Decorator

operation()
component

ConcreteComponent
operation()

ConcreteDecoratorA
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aDecorator
component aComponent

aDecorator
component

Decorator forwards all component operations
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Favor Composition over Inheritance
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Refactoring: Move Embellishment to Decorator
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Client aBinaryTree
toArray

Client aBinaryTree
toArray

anOddValueDecorator

toArray

Tuesday, February 22, 2011



Benefits & Liabilities
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Simplifies a class
Distinguishes a classes core responsibilities from embellishments

Changes the object identity of a decorated object
Code harder to understand and debug
Combinations of decorators may not work correctly together 

Benefits

Liabilities
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Command
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Command
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Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Example
Invoker be a menu
Client be a word processing program
Receiver a document
Action be save

Encapsulates a request as an object

Tuesday, February 22, 2011



When to Use the Command Pattern
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Need action as a parameter (replaces callback functions)

Specify, queue, and execute requests at different times

Undo

Logging changes

High-level operations built on primitive operations

 A transaction encapsulates a set of changes to data

 Systems that use transaction often can use the command 
pattern

Macro language
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Callback Function vs Command
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Command contains reference to object that it acts on
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Consequences
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Command decouples the object that invokes the operation from the one that knows how 
to perform it

It is easy to add new commands, because you do not have to change existing classes 

You can assemble commands into a composite object
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Refactoring: Replace Conditional Dispatcher
with Command
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public class SDSUChatServer {
public void processClientRequest(String request) { 

blah
if (command.equals("quit"))

quit();
else if  (command.equals("register"))

registerNewUser(commandData);
else if  (command.equals("login"))

login(commandData);
else if  (command.equals("nickname"))

checkNickname(commandData);
blah

}

action = actions.get(command);
action.execute(commandData);
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Sample Command
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public class RegisterCommand extends Command {
private SDSUChatServer target;

public RegisterCommand(SDSUChatServer aServer) {
target = aServer;

}

public void execute(String commandData) {
target.registerNewUser(commandData);

}
}

bad example do not use
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The actions table
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public class SDSUChatServer {
private HashMap<String, Command> actions;

private populateActions() {
actions = new HashMap<String, Command>();
actions.put("quit", new QuitCommand(this));
actions.put("register", new RegisterCommand(this));
actions.put("login", new LoginCommand(this));
actions.put("nickname", new NicknameCommand(this));

}
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When to do this?
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Need runtime flexibility 

Conditional Dispatcher is bloated

Tuesday, February 22, 2011



Pluggable Commands
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Can create one general Command using reflection

Don’t hard code the method called in the command

Pass the method to call an argument
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Java Example of Pluggable Command
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import java.util.*;
import java.lang.reflect.*;

public class Command
 {
 private Object receiver;
 private Method command;
 private Object[] arguments;
 
 public Command(Object receiver, Method command, 
       Object[] arguments )
  {
  this.receiver = receiver;
  this.command = command;
  this.arguments = arguments;
  }

 public void execute() throws InvocationTargetException, 
        IllegalAccessException
  {
  command.invoke( receiver, arguments );
  }
 }
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Using the Pluggable Command
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public class Test {
 public static void main(String[] args) throws Exception 
  {
  Vector sample = new Vector();
  Class[] argumentTypes = { Object.class };
  Method add = 
   Vector.class.getMethod( "addElement", argumentTypes);
  Object[] arguments = { "cat" };
  
  Command test = new Command(sample, add, arguments );
  test.execute();
  System.out.println( sample.elementAt( 0));
  }
 }

Output
cat
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Command Processor Pattern
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Command Processor Pattern
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Command Processor manages the command objects

The command processor:

 Contains all command objects

 Schedules the execution of commands

 May store the commands for later unto

 May log the sequence of commands for testing purposes

 Uses singleton to insure only one instance
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Structure
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Client

Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Command

Processor

commandStack

doIt(command)
undoIt()

creates

transfer
command

performs

stores
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Dynamics
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Command
ProcessorClient

MakeBold
Command

Document

request

undo
request undoIt() undo()

delete()

restoreText()

getSelection()

makeBold()

do()
doIt()

create()

makeBold
command
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Benefits
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Flexibility in the way requests are activated

 Different user interface elements can generate the same kind of command object

 Allows the user to configure commands performed by a user interface element

Flexibility in the number and functionality of requests

 Adding new commands and providing for a macro language comes easy

Programming execution-related services

 Commands can be stored for later replay
 Commands can be logged
 Commands can be rolled back

Testability at application level

Concurrency

 Allows for the execution of commands in separate threads
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Liabilities
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Efficiency loss

Potential for an excessive number of command classes

 Try reducing the number of command classes by:

  Grouping commands around abstractions
  Unifying simple commands classes by passing the receiver object as a 
parameter

Complexity

 How do commands get additional parameters they need?
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