
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2011

Doc 1 Introduction
Jan 20, 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Wednesday, January 19, 2011

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Object-Oriented Design Heuristics, Riel,
Addison Wesley, 1996

Wednesday, January 19, 2011

Reading

3

Jan 25 - Big Ball of Mud, http://www.laputan.org/mud/mud.html

Jan 27 - Refactoring, Chapters 1 & 2

Feb 1 - Refactoring, Chapters 3 & 4

Wednesday, January 19, 2011

http://www.laputan.org/mud/mud.html
http://www.laputan.org/mud/mud.html

Crashing

4

Last Day to Add

Feb 3

Last Day to Drop

Feb 1

Wednesday, January 19, 2011

Course Web Site

5

http://www.eli.sdsu.edu/index.html

CS 635 Spring 11

Lecture Notes
Assignments
Wiki
Mailing List
Course Portal
Syllabus
Reading Assignments

Wednesday, January 19, 2011

http://www.eli.sdsu.edu/index.html
http://www.eli.sdsu.edu/index.html

Languages

6

Java, C++, C#, Ruby, Objective C or Smalltalk

Wednesday, January 19, 2011

Preferred Languages

7

Java
Smalltalk

Ruby

Objective C

Wednesday, January 19, 2011

C#

8

Programs have to run in Mono

It is your responsibility to insure this

No support

Wednesday, January 19, 2011

C++ is STRONGLY Discouraged

9

I have not used C++ in over 10 years

I don't like the language

It is very difficult to grade
Each additional language make grading harder

It is extremely hard to deal with GUI assignments in C++

Assignments are often harder in C++

Wednesday, January 19, 2011

What this course is about

10

Writing quality OO code
Design Patterns
Coupling & Cohesion

Unit Testing
Refactoring

Wednesday, January 19, 2011

Scale Changes Everything

11

Wednesday, January 19, 2011

12

Review

Wednesday, January 19, 2011

Define

13

Object
Class

Wednesday, January 19, 2011

What are the Benefits of OO

14

Wednesday, January 19, 2011

Issues?

15

public class A {
 public int x;
 public int y;
 public int z;
}

Wednesday, January 19, 2011

Issues?

16

class Stack
 def initialize
 @elements = Array.new
 end

 def empty?
 return @elements.empty?
 end

 def push(element)
 @elements.push(element)
 end

 def pop
 @elements.pop
 return elements
 end
end

Wednesday, January 19, 2011

A verses B

17

public class B {
 private int x;
 private int y;
 private int z;

 public int getX() { return x;}
 public int getY() { return y;}
 public int getZ() { return z;}
 public void setX(int value) {x = value;}
 public void setY(int value) {y = value;}
 public void setZ(int value) {z = value;}
}

public class A {
 public int x;
 public int y;
 public int z;
}

Wednesday, January 19, 2011

Heuristics

18

Keep related data and behavior in one place

A class should capture one and only one key abstraction

Wednesday, January 19, 2011

Heuristics

19

Beware of classes that have many accessor methods defined in their public interface

Do not create god classes/objects in your system

Beware of classes that have too much noncommunicating behavior

Wednesday, January 19, 2011

