
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2011

Doc 1 Introduction
Jan 20, 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this 
document.

Wednesday, January 19, 2011

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml


References

2

Object-Oriented Design Heuristics, Riel, 
Addison Wesley, 1996

Wednesday, January 19, 2011



Reading
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Jan 25 - Big Ball of Mud, http://www.laputan.org/mud/mud.html

Jan 27 - Refactoring, Chapters 1 & 2

Feb 1 - Refactoring, Chapters 3 & 4
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Crashing
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Last Day to Add

Feb 3

Last Day to Drop

Feb 1
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Course Web Site
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http://www.eli.sdsu.edu/index.html

CS 635 Spring 11

Lecture Notes
Assignments
Wiki
Mailing List
Course Portal
Syllabus
Reading Assignments
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Languages
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Java, C++, C#, Ruby, Objective C or Smalltalk
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Preferred Languages
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Java
Smalltalk

Ruby

Objective C
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C#
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Programs have to run in Mono

It is your responsibility to insure this 

No support
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C++ is STRONGLY Discouraged
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I have not used C++ in over 10 years

I don't like the language

It is very difficult to grade
Each additional language make grading harder

It is extremely hard to deal with GUI assignments in C++

Assignments are often harder in C++
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What this course is about
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Writing quality OO code 
Design Patterns 
Coupling & Cohesion 

Unit Testing 
Refactoring
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Scale Changes Everything
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Review
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Define
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Object 
Class
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What are the Benefits of OO
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Issues?
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public class A { 
 public int x; 
 public int y; 
 public int z; 
} 
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Issues?
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class Stack 
  def initialize 
    @elements = Array.new 
  end 
  
  def empty? 
    return @elements.empty? 
  end 
  
  def push(element) 
    @elements.push(element) 
  end 
  
  def pop 
    @elements.pop 
    return elements 
  end 
end 
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A verses B
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public class B { 
 private int x; 
 private int y; 
 private int z; 
  
 public int getX() { return x;} 
 public int getY() { return y;} 
 public int getZ() { return z;} 
 public void setX(int value) {x = value;} 
 public void setY(int value) {y = value;} 
 public void setZ(int value) {z = value;} 
} 

public class A { 
 public int x; 
 public int y; 
 public int z; 
} 
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Heuristics
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Keep related data and behavior in one place

A class should capture one and only one key abstraction
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Heuristics
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Beware of classes that have many accessor methods defined in their public interface

Do not create god classes/objects in your system

Beware of classes that have too much noncommunicating behavior
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