
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2013

Doc 3 Review, Refactoring
Jan 24, 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, January 24, 13

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Review

2

Object-Oriented Programming is good as it promotes
Code reuse
More readable code
More maintainable code
Better designs

Thursday, January 24, 13

Basic OO Heuristics

3

Keep related data and behavior in one place

A class should capture one and only one key abstraction

Beware of classes that have many accessor methods defined in their public interface

Thursday, January 24, 13

OO History

4

Objects as a formal concept in programming - Simula 67

Smalltalk introduced the term object-oriented programming - 1970s

Became dominant programming methodology
Early and mid 1990s

Thursday, January 24, 13

http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula

So Why is Software Still so Bad?

5

Thursday, January 24, 13

Title Case

6

First letter in each word in a sentence is capitalized

This Is In Title Case.

This is not in title case.

NOR IS THIS IN TITLE CASE

Thursday, January 24, 13

Where do you put it in Java

7

In what class would you put a method that converts a string to title case?

Thursday, January 24, 13

Utility Method (Utility Function)

8

A method in a class that only uses data passed in as parameters

Thursday, January 24, 13

Code Smell

9

Hint that something has gone wrong somewhere in your code

http://c2.com/cgi/wiki?CodeSmell

Thursday, January 24, 13

Lists of Code Smells

10

A Taxonomy for "Bad Code Smells"

http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

Coding Horror: Code Smells

http://www.codinghorror.com/blog/2006/05/code-smells.html

http://c2.com/cgi/wiki?CodeSmell

Cunningham wiki c2

Thursday, January 24, 13

Code Smell - Utility Method

11

Helper functions are a sign that related data and operations are not together

Thursday, January 24, 13

Java & OO

12

In many situations we can not OO in Java

Can not keep data and operations together in many of Java's existing classes

Ruby, Objective-C & Smalltalk allow you to add to existing classes

Thursday, January 24, 13

Result

13

Can't practice OO in small cases

Develop poor habits

Lose benefits of OO but don't noticce

Thursday, January 24, 13

Code Smell - Vague Identifier

14

meetsCriteria
flag

This generally happens when the One Responsibility Rule has been violated

Thursday, January 24, 13

http://c2.com/cgi/fullSearch
http://c2.com/cgi/fullSearch
http://c2.com/cgi/wiki?OneResponsibilityRule
http://c2.com/cgi/wiki?OneResponsibilityRule

One Responsibility Rule

15

"A class has a single responsibility: it does it all, does it well, and does it only"

Bertrand Meyer

Try to describe a class in 25 words or less, and not to use "and" or "or"

If can not do this you may have more than one class

Thursday, January 24, 13

http://c2.com/cgi/fullSearch
http://c2.com/cgi/fullSearch

16

Refactoring

Thursday, January 24, 13

Refactoring

17

Changing the internal structure of software that changes its observable behavior

Done to make the software easier to understand and easier to modify

Thursday, January 24, 13

When to Refactor

18

Rule of three

Three strikes and you refactor

Thursday, January 24, 13

When to Refactor

19

When you add a new function
When you need to fix a bug
When you do a code review

Thursday, January 24, 13

When Refactoring is Hard

20

Databases

Changing published interfaces

Major design issues

Thursday, January 24, 13

21

When you add a feature to a program

If needed Refactor the program to make it easy to add the feature

Then add the feature

Thursday, January 24, 13

22

Before you start refactoring

Make sure that you have a solid suite of tests

Test should be self-checking

Thursday, January 24, 13

23

Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?

Thursday, January 24, 13

24

Eclipse Refactoring

Thursday, January 24, 13

Eclipse Refactoring Menu

25

Thursday, January 24, 13

Rename Class

26

public class Foo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 Foo test = new Foo();
 return test.foo() + 99;
 }
}

public class NewFoo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 NewFoo test = new NewFoo();
 return test.foo() + 99;
 }
}

Thursday, January 24, 13

Eclipse Rename

27

Thursday, January 24, 13

Move

28

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() { return 20; }
}

public class Bar {
 public int helperMethod(Foo test) {
 return test.foo() + test.fooTwo();
 }

 public int callHelper() {
 Foo data = new Foo();
 return helperMethod(data);
 }
}

public class Bar {
 public int callHelper() {
 Foo data = new Foo();
 return data.sum();
 }
}

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() {return 20; }

 public int sum() {
 return foo() + fooTwo();
 }
}

Thursday, January 24, 13

Eclipse Move

29

Thursday, January 24, 13

Extract Class

30

Thursday, January 24, 13

Refactoring Tool Issue

31

People tend to only use the features they know

Thursday, January 24, 13

Refactoring Tool Issue

32

Is a tool hard to use because I am unfamiliar with it or is it just hard to use

Thursday, January 24, 13

Refactoring by 41 Professional Programmers

33

Number of Programmers used
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396

Thursday, January 24, 13

From Refactoring Tools: Fitness for Purpose, Emerson Murphy-Hill and Andrew P. Black,http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.139.191&rep=rep1&type=pdf

Try In Eclipse

34

Rename
Move
Encapsulate Field
Extract Method
Extract Class

Thursday, January 24, 13

35

Unit Testing

Thursday, January 24, 13

Johnson's Law

If it is not tested it does not work

The more time between coding and testing

 More effort is needed to write tests
 More effort is needed to find bugs
 Fewer bugs are found
 Time is wasted working with buggy code
 Development time increases
 Quality decreases

Testing

36

Thursday, January 24, 13

Unit Testing

37

Tests individual code segments

Automated tests

Thursday, January 24, 13

Using print statements

Writing driver program in main

Writing small sample programs to run code

Running program and testing it be using it

What wrong with:

38

Thursday, January 24, 13

We have a QA Team, so why should I write tests?

39

Thursday, January 24, 13

First write the tests

Then write the code to be tested

Writing tests first saves time

 Makes you clear of the interface & functionality of the code

 Removes temptation to skip tests

When to Write Tests

40

Thursday, January 24, 13

Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test

41

Thursday, January 24, 13

Adapted with permission from “A Short Catalog of
Test Ideas” by Brian Marick,
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly

42

Thursday, January 24, 13

http://www.testing.com/writings.html
http://www.testing.com/writings.html

XUnit

43

Free frameworks for Unit testing

SUnit originally written by Kent Beck 1994

JUnit written by Kent Beck & Erich Gamma

Available at: http://www.junit.org/

Ports to many languages at:
 http://www.xprogramming.com/software.htm

Thursday, January 24, 13

XUnit Versions

44

3.x
Old version
Works with a versions of Java

4.x
Current version 4.8.1
Uses Annotations
Requires Java 5 or later

Thursday, January 24, 13

Simple Class to Test

45

public class Adder {
 private int base;
 public Adder(int value) {
 base = value;
 }

 public int add(int amount) {
 return base + amount;
 }
}

Thursday, January 24, 13

Creating Test Case in Eclipse

46

Thursday, January 24, 13

Fill in dialog window &
 create the test cases

Creating Test Case in Eclipse

47

Thursday, January 24, 13

Test Class

48

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestAdder {

 @Test
 public void testAdd() {
 Adder example = new Adder(3);
 assertEquals(4, example.add(1));
 }

 @Test
 public void testAddFail() {
 Adder example = new Adder(3);
 assertTrue(3 == example.add(1));
 }
}

Thursday, January 24, 13

Running the Tests

49

Thursday, January 24, 13

The result

50

Thursday, January 24, 13

assertArrayEquals()
assertTrue()
assertFalse()
assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertNull()
assertNotNull()
fail()

Assert Methods

51

Thursday, January 24, 13

For a complete list see http://kentbeck.github.com/junit/javadoc/latest/

Annotations

52

After
AfterClass
Before
BeforeClass
Ignore
Rule
Test

Thursday, January 24, 13

Using Before

53

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

public class TestAdder {
 Adder example;
 @Before
 public void setupExample() {
 example = new Adder(3);
 }

 @Test
 public void testAdd() {
 assertEquals(4, example.add(1));
 }
}

Thursday, January 24, 13

54

Code Smells

Thursday, January 24, 13

55

Classifying Fowler's Code Smells

Bloaters

Long method
Large Class
Primitive Obsession
Long Parameter List
Data Clumps

Object-Orientation Abusers

Switch Statements
Temporary Field
Refused Bequest
Alternative Classes with
Different Interfaces

Change Preventers
Divergent Change
Shotgun Surgery
Parallel Inheritance Hierarchies

Thursday, January 24, 13

http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

56

Classifying Fowler's Code Smells

Dispensables

Lazy class
Data class
Duplicate Code
Dead Code,
Speculative Generality

Couplers

Feature Envy
Inappropriate Intimacy
Message Chains
Middle Man

Thursday, January 24, 13

http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

Duplicate Code

57

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Thursday, January 24, 13

58

The average method size should be less than 8 lines of code (LOC) for Smalltalk
and 24 LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class

Thursday, January 24, 13
Mark Lorenz, Object-Oriented Software Development: A Practical Guide, 1993, Appendix I Measures and
Metrics

Long Parameter List

59

a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)

Thursday, January 24, 13

Divergent Change

60

One class is changed in different ways for different reasons

Thursday, January 24, 13

ShotGun Surgery

61

When you have to make a kind of change you
have to make a lot of little changes in different
locations

Thursday, January 24, 13

Feature Envy

62

A method seems more interested in a class other
than the on it is in.

Thursday, January 24, 13

Data Clumps

63

Same three or four data items together in lots of places

Thursday, January 24, 13

Primitive Obsession

64

Using primitive types instead of creating small classes

Thursday, January 24, 13

Switch Statements

65

How do you program without them?

Thursday, January 24, 13

Lazy Class

66

Class that is not doing enough to pay for itself

Thursday, January 24, 13

Data Class

67

Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup
object, they need to take some responsibility

Thursday, January 24, 13

Inappropriate Intimacy

68

Classes that spend too much time delving into other classes private parts

Thursday, January 24, 13

Message Chains

69

location = rat.getRoom().getMaze().getLocation()

Thursday, January 24, 13

Negative Slope

70

if (foo) {
if (bar) {

if (cat = dog) {
if (rat < 10) {

...

Thursday, January 24, 13

Temporary Field

71

Field is only used in certain circumstances

Common case
field is only used by an algorithm
Don't want to pass around long parameter list
Make parameter a field

Thursday, January 24, 13

Refused Bequest

72

Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class

Thursday, January 24, 13

