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Some Concepts
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Abstraction
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“Extracting the essential details about an item or group 
of items, while ignoring the unessential details.”
 Edward Berard

“The process of identifying common patterns that have 
systematic variations; an abstraction represents the 
common pattern and provides a means for specifying 
which variation to use.”
 Richard Gabriel
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Encapsulation
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Enclosing all parts of an abstraction within a container
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Information Hiding
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Hiding of design decisions in a computer program

Hide decisions are most likely to change, 
To protect other parts of the program
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Class
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Represents an abstraction
Abstraction contains data and operations

Encapsulates data and operations of the abstraction

Hide design decisions/details

Thursday, January 31, 13

Not so much a definition of a class as a goal how we should use a class. 



Metrics for Quality
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Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are functionally 
related
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Coupling
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Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the reusability of 
the coupled objects"

"Unnecessary object coupling also increases the chances of system 
corruption when changes are made to one or more of the coupled 
objects"

Design Goal

The interaction or other interrelationship between any two 
components at the same level of abstraction within the system be as 
weak as possible
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Disadvantages of Tightly Coupled Systems
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A change in one module usually forces a ripple effect of changes in other modules

Assembly of modules might require more effort and/or time due to the increased inter-
module dependency

A particular module might be harder to reuse and/or test because dependent modules 
must be included
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Source: http://en.wikipedia.org/wiki/Coupling_(computer_programming)

http://en.wikipedia.org/wiki/Ripple_effect
http://en.wikipedia.org/wiki/Ripple_effect


Types of Coupling
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Nil Coupling
No interaction between two classes

Export Coupling
One class uses the public interface of another

Overt Coupling
One class uses implementation details of another class with permission

Covert Coupling
One class uses implementation details of another class without permission
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There are other categories of coupling. See Wikipedia on Coupling



Polymorphism

11

Objects with the same interface can be substituted for each other at run-time 

Variables take on many classes of object 

Objects will behave according to their type 

Code can work with any object that has the right set of methods 

In Java polymorphism requires 
 Inheritance or
 Interfaces

In Smalltalk, Ruby & Objective C polymorphism requires
 Objects that implement methods with same name
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Simplistic Example
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Bank offers various types of accounts: 

Checking
Savings
CD
Junior savings accounts

Each type has different rules for processing a transaction 

Account

Checking InterestAccount

Savings CD Junior

Thursday, January 31, 13



Processing a Transaction
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Using Case Statement

newCustomer := Bank.createNewAccount(type) 

if (newCustomer.isChecking() ) {
newCustomer.checkTransaction(blah);

}
if (newCustomer.isSavings() ) {

newCustomer.savingsTransaction(blah);
}
if (newCustomer.isJunior() ) {

newCustomer.savingsTransaction(blah);
}
etc
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 Using Polymorphism
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newCustomer := Bank.createNewAccount(type); 
newCustomer.processTransaction(amount); 

Which processTransaction is called? 

Adding new types of accounts to program requires: 

Adding new subclasses
Changing code that creates objects

Avoid checking the class of an object 
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Trie Example
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Trie Assignment - Strawman Solution
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Classes with fields

TrieNode
char letter;
TrieNode[] childNodes;
boolean isWord;

Trie
No Fields
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Trie Assignment - Strawman Solution
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Methods TrieNode

None
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Trie Assignment - Strawman Solution
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Methods Trie

public TrieNode createRoot()
public void insertWord(TrieNode root, String word)
public boolean findWord(TrieNode root, String word)
public void printTrie(TrieNode root)
public void printTrieWordsContainingCK(TrieNode root)
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Strawman Solution & Abstraction
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Data & Operations not together

Fail
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Strawman Solution & Information Hiding
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public TrieNode createRoot()
public void insertWord(TrieNode root, String word)
public boolean findWord(TrieNode root, String word)
public void printTrie(TrieNode root)
public void printTrieWordsContainingCK(TrieNode root)

Have to pass data into Trie class

No information hidling
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Trie Assignment - Tinman Solution
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Classes with fields

TrieNode
char letter;
TrieNode[] childNodes;
boolean isWord;

Trie
TrieNode root
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Trie Assignment - Tinman Solution
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Methods TrieNode

Getters & Setters
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Trie Assignment - Tinman Solution
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Methods Trie

public void insertWord(String word)
public boolean findWord(String word)
public void printTrie()
public void printTrieWordsContainingCK()
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Tinman Solution & Polymorphism
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Trie is a collection contains words

Can we replace any Java collection for this Trie class?

No

So fail polymorphism
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How to get Polymorphsim
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Need to use same method names as in other collection classes

In Java need to implement Collection interface

What should the methods be called?
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Two Issues
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public void printTrieWordsContainingCK() {

blah
blah
blah

System.out.print(fooBar);
blah

}
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Two Issues
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Abstraction
What abstraction does printTrieWordsContainingCK belong?

Coupling
printTrieWordsContainingCK is coupled to System.out
Not useful
Inflexible
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Solving the Two Issues
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Iterators
Visitor Pattern
Strategy Pattern
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Iterator Pattern

Provide a way to access the elements of a collection sequentially 
without exposing its underlying representation
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Iterator Solution
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Java
LinkedList<Strings> strings =  new LinkedList<Strings>();

code to add strings

for (String element : strings) {
 if (element.size % 2 == 0)
  System.out.println(element);
}

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);          
 } 
}
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This is 1/2 the way to a good solution.



Ruby Iterator Examples
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a.each {|x| puts x}

1
2
3
4

result = a.collect {|x| x + 10}
puts result

11
12
13
14

result = a.find_all {|x| x > 2 }
puts result

3
4

puts a.any? {|x| x > 2} true

puts a.detect {|x| x > 2 } 3

 a = [1, 2, 3, 4]
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Ruby has a richer set of iterators than Java. Smalltalk, which inspired Ruby's iterators, has a richer set of iterators that Ruby. 
Perhaps the language that replaces Ruby will match the power that Smalltalk had 20 years ago.



Pattern Parts
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Intent

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample Code
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Iterator Structure
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CreateIterator()

Aggregate

CreateIterator()

ConcreteAggregate

First()

Next()

IsDone()

CurrentItem()

Iterator

return new ConcreteIterator(this)

Client

ConcreteIterator
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Issue - What is the big deal?
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var numbers = new LinkedList();

code to add numbers

Iterator list = numbers.iterator();
while ( list.hasNext() ) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
       if ((b % 2) == 0)

  System.out.println( x );
}

var numbers = new LinkedList();

code to add numbers

for (int k =0; k < numbers.size(); k++ ) {
 Integer a = (Integer) numbers.get(k);
 int b = a.intValue();
       if ((b % 2) == 0)

  System.out.println( x );
}
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Java's Enumerations and iterators were awkward to use. C# pushed Sun to add better syntax.



Issues - Concrete vs. Polymorphic Iterators
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Concrete
Reader iterator = new StringReader( "cat");
int c;
while (-1 != (c = iterator.read() ))
 System.out.println( (char) c);

Polymorphic
Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
while ( list.hasNext() )
 System.out.println( list.next() );

Memory leak issue in C++, Why?
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Issue - Who Controls the Iteration?
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External (Active)
var numbers = new LinkedList();

code to add numbers

Vector evens = new Vector();
Iterator list = numbers.iterator();
 while ( list.hasNext() ) {
  Integer a = (Integer) list.next();
  int b = a.intValue();
       if ((b % 2) == 0)
   evens.add(a);
      }

Internal (Passive)
numbers  = LinkedList.new

code to add numbers
 
evens = numbers.find_all { |element| element.even? }
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Issue - Who Defines the Traversal Algorithm
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Object being iterated Iterator
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Issue - Robustness

38

What happens when items are added/removed from the iteratee while an iterator exists?

Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
listOfStudents.add( new Student( "Roger") );

list.hasNext();   //What happens here?
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Are Java's Input Streams & Readers Iterators?
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Pipes and Filters
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Pipes & Filters
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ls | grep -i b | wc -l

Context
Processing data streams

Problem
Building a system that processes or transforms a stream of data 

Forces
Small processing steps are easier to reuse than large components

Non-adjacent processing steps do not share information

System changes should be possible by exchanging or recombining processing steps, even by users

Final results should be presented or stored in different ways
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Solution
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Divide task into multiple sequential processing steps or filter components

Output of one filter is the input of the next filter

Filters process data incrementally

Filter does not wait to get all the data before processing
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Solution Continued
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Data source – input to the system

Data sink – output of the system

Pipes  - connect the data source, filters and data sink

Pipe implements the data flow between adjacent processes steps

Processing pipeline – sequence of filters and pipes

Pipeline can process batches of data

Data
Source Pipe Filter Data

Sink
FilterPipe Pipe
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Python Interpreter
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http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential
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Intercepting Filter - Problem
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Preprocessing and post-processing of a client Web request and 
response

A Web request often must pass several tests prior to the main 
processing
 Has the client been authenticated?
 Does the client have a valid session?
 Is the client's IP address from a trusted network?
 Does the request path violate any constraints?
 What encoding does the client use to send the data?
 Do we support the browser type of the client?

Nested if statements lead to fragile code
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Intercepting Filter - Forces
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Common processing, such as checking the data-encoding scheme or logging 
information about each request, completes per request.

Centralization of common logic is desired.

Services should be easy to add or remove unobtrusively without affecting 
existing components, so that they can be used in a variety of combinations, 
such as

Logging and authentication

Debugging and transformation of output for a specific client

Uncompressing and converting encoding scheme of input
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