
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2013

Doc 4 Concepts, Trie, Iterator
Jan 29, 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, January 31, 13

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Some Concepts

Thursday, January 31, 13

Abstraction

3

“Extracting the essential details about an item or group
of items, while ignoring the unessential details.”
 Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the
common pattern and provides a means for specifying
which variation to use.”
 Richard Gabriel

Thursday, January 31, 13

Encapsulation

4

Enclosing all parts of an abstraction within a container

Thursday, January 31, 13

Information Hiding

5

Hiding of design decisions in a computer program

Hide decisions are most likely to change,
To protect other parts of the program

Thursday, January 31, 13

Class

6

Represents an abstraction
Abstraction contains data and operations

Encapsulates data and operations of the abstraction

Hide design decisions/details

Thursday, January 31, 13

Not so much a definition of a class as a goal how we should use a class.

Metrics for Quality

7

Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are functionally
related

Thursday, January 31, 13

Coupling

8

Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the reusability of
the coupled objects"

"Unnecessary object coupling also increases the chances of system
corruption when changes are made to one or more of the coupled
objects"

Design Goal

The interaction or other interrelationship between any two
components at the same level of abstraction within the system be as
weak as possible

Thursday, January 31, 13

Disadvantages of Tightly Coupled Systems

9

A change in one module usually forces a ripple effect of changes in other modules

Assembly of modules might require more effort and/or time due to the increased inter-
module dependency

A particular module might be harder to reuse and/or test because dependent modules
must be included

Thursday, January 31, 13

Source: http://en.wikipedia.org/wiki/Coupling_(computer_programming)

http://en.wikipedia.org/wiki/Ripple_effect
http://en.wikipedia.org/wiki/Ripple_effect

Types of Coupling

10

Nil Coupling
No interaction between two classes

Export Coupling
One class uses the public interface of another

Overt Coupling
One class uses implementation details of another class with permission

Covert Coupling
One class uses implementation details of another class without permission

Thursday, January 31, 13

There are other categories of coupling. See Wikipedia on Coupling

Polymorphism

11

Objects with the same interface can be substituted for each other at run-time

Variables take on many classes of object

Objects will behave according to their type

Code can work with any object that has the right set of methods

In Java polymorphism requires
 Inheritance or
 Interfaces

In Smalltalk, Ruby & Objective C polymorphism requires
 Objects that implement methods with same name

Thursday, January 31, 13

Simplistic Example

12

Bank offers various types of accounts:

Checking
Savings
CD
Junior savings accounts

Each type has different rules for processing a transaction

Account

Checking InterestAccount

Savings CD Junior

Thursday, January 31, 13

Processing a Transaction

13

Using Case Statement

newCustomer := Bank.createNewAccount(type)

if (newCustomer.isChecking()) {
newCustomer.checkTransaction(blah);

}
if (newCustomer.isSavings()) {

newCustomer.savingsTransaction(blah);
}
if (newCustomer.isJunior()) {

newCustomer.savingsTransaction(blah);
}
etc

Thursday, January 31, 13

 Using Polymorphism

14

newCustomer := Bank.createNewAccount(type);
newCustomer.processTransaction(amount);

Which processTransaction is called?

Adding new types of accounts to program requires:

Adding new subclasses
Changing code that creates objects

Avoid checking the class of an object

Thursday, January 31, 13

15

Trie Example

Thursday, January 31, 13

Trie Assignment - Strawman Solution

16

Classes with fields

TrieNode
char letter;
TrieNode[] childNodes;
boolean isWord;

Trie
No Fields

Thursday, January 31, 13

Trie Assignment - Strawman Solution

17

Methods TrieNode

None

Thursday, January 31, 13

Trie Assignment - Strawman Solution

18

Methods Trie

public TrieNode createRoot()
public void insertWord(TrieNode root, String word)
public boolean findWord(TrieNode root, String word)
public void printTrie(TrieNode root)
public void printTrieWordsContainingCK(TrieNode root)

Thursday, January 31, 13

Strawman Solution & Abstraction

19

Data & Operations not together

Fail

Thursday, January 31, 13

Strawman Solution & Information Hiding

20

public TrieNode createRoot()
public void insertWord(TrieNode root, String word)
public boolean findWord(TrieNode root, String word)
public void printTrie(TrieNode root)
public void printTrieWordsContainingCK(TrieNode root)

Have to pass data into Trie class

No information hidling

Thursday, January 31, 13

Trie Assignment - Tinman Solution

21

Classes with fields

TrieNode
char letter;
TrieNode[] childNodes;
boolean isWord;

Trie
TrieNode root

Thursday, January 31, 13

Trie Assignment - Tinman Solution

22

Methods TrieNode

Getters & Setters

Thursday, January 31, 13

Trie Assignment - Tinman Solution

23

Methods Trie

public void insertWord(String word)
public boolean findWord(String word)
public void printTrie()
public void printTrieWordsContainingCK()

Thursday, January 31, 13

Tinman Solution & Polymorphism

24

Trie is a collection contains words

Can we replace any Java collection for this Trie class?

No

So fail polymorphism

Thursday, January 31, 13

How to get Polymorphsim

25

Need to use same method names as in other collection classes

In Java need to implement Collection interface

What should the methods be called?

Thursday, January 31, 13

Two Issues

26

public void printTrieWordsContainingCK() {

blah
blah
blah

System.out.print(fooBar);
blah

}

Thursday, January 31, 13

Two Issues

27

Abstraction
What abstraction does printTrieWordsContainingCK belong?

Coupling
printTrieWordsContainingCK is coupled to System.out
Not useful
Inflexible

Thursday, January 31, 13

Solving the Two Issues

28

Iterators
Visitor Pattern
Strategy Pattern

Thursday, January 31, 13

29

Iterator Pattern

Provide a way to access the elements of a collection sequentially
without exposing its underlying representation

Thursday, January 31, 13

Iterator Solution

30

Java
LinkedList<Strings> strings = new LinkedList<Strings>();

code to add strings

for (String element : strings) {
 if (element.size % 2 == 0)
 System.out.println(element);
}

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);
 }
}

Thursday, January 31, 13

This is 1/2 the way to a good solution.

Ruby Iterator Examples

31

a.each {|x| puts x}

1
2
3
4

result = a.collect {|x| x + 10}
puts result

11
12
13
14

result = a.find_all {|x| x > 2 }
puts result

3
4

puts a.any? {|x| x > 2} true

puts a.detect {|x| x > 2 } 3

 a = [1, 2, 3, 4]

Thursday, January 31, 13

Ruby has a richer set of iterators than Java. Smalltalk, which inspired Ruby's iterators, has a richer set of iterators that Ruby.
Perhaps the language that replaces Ruby will match the power that Smalltalk had 20 years ago.

Pattern Parts

32

Intent

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample Code

Thursday, January 31, 13

Iterator Structure

33

CreateIterator()

Aggregate

CreateIterator()

ConcreteAggregate

First()

Next()

IsDone()

CurrentItem()

Iterator

return new ConcreteIterator(this)

Client

ConcreteIterator

Thursday, January 31, 13

Issue - What is the big deal?

34

var numbers = new LinkedList();

code to add numbers

Iterator list = numbers.iterator();
while (list.hasNext()) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
 if ((b % 2) == 0)

 System.out.println(x);
}

var numbers = new LinkedList();

code to add numbers

for (int k =0; k < numbers.size(); k++) {
 Integer a = (Integer) numbers.get(k);
 int b = a.intValue();
 if ((b % 2) == 0)

 System.out.println(x);
}

Thursday, January 31, 13

Java's Enumerations and iterators were awkward to use. C# pushed Sun to add better syntax.

Issues - Concrete vs. Polymorphic Iterators

35

Concrete
Reader iterator = new StringReader("cat");
int c;
while (-1 != (c = iterator.read()))
 System.out.println((char) c);

Polymorphic
Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
while (list.hasNext())
 System.out.println(list.next());

Memory leak issue in C++, Why?

Thursday, January 31, 13

Issue - Who Controls the Iteration?

36

External (Active)
var numbers = new LinkedList();

code to add numbers

Vector evens = new Vector();
Iterator list = numbers.iterator();
 while (list.hasNext()) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
 if ((b % 2) == 0)
 evens.add(a);
 }

Internal (Passive)
numbers = LinkedList.new

code to add numbers

evens = numbers.find_all { |element| element.even? }

Thursday, January 31, 13

Issue - Who Defines the Traversal Algorithm

37

Object being iterated Iterator

Thursday, January 31, 13

Issue - Robustness

38

What happens when items are added/removed from the iteratee while an iterator exists?

Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
listOfStudents.add(new Student("Roger"));

list.hasNext(); //What happens here?

Thursday, January 31, 13

39

Are Java's Input Streams & Readers Iterators?

Thursday, January 31, 13

40

Pipes and Filters

Thursday, January 31, 13

Pipes & Filters

41

ls | grep -i b | wc -l

Context
Processing data streams

Problem
Building a system that processes or transforms a stream of data

Forces
Small processing steps are easier to reuse than large components

Non-adjacent processing steps do not share information

System changes should be possible by exchanging or recombining processing steps, even by users

Final results should be presented or stored in different ways

Thursday, January 31, 13

Solution

42

Divide task into multiple sequential processing steps or filter components

Output of one filter is the input of the next filter

Filters process data incrementally

Filter does not wait to get all the data before processing

Thursday, January 31, 13

Solution Continued

43

Data source – input to the system

Data sink – output of the system

Pipes - connect the data source, filters and data sink

Pipe implements the data flow between adjacent processes steps

Processing pipeline – sequence of filters and pipes

Pipeline can process batches of data

Data
Source Pipe Filter Data

Sink
FilterPipe Pipe

Thursday, January 31, 13

Python Interpreter

44

http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential

Thursday, January 31, 13

http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential
http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential

Intercepting Filter - Problem

45

Preprocessing and post-processing of a client Web request and
response

A Web request often must pass several tests prior to the main
processing
 Has the client been authenticated?
 Does the client have a valid session?
 Is the client's IP address from a trusted network?
 Does the request path violate any constraints?
 What encoding does the client use to send the data?
 Do we support the browser type of the client?

Nested if statements lead to fragile code

Thursday, January 31, 13

Intercepting Filter - Forces

46

Common processing, such as checking the data-encoding scheme or logging
information about each request, completes per request.

Centralization of common logic is desired.

Services should be easy to add or remove unobtrusively without affecting
existing components, so that they can be used in a variety of combinations,
such as

Logging and authentication

Debugging and transformation of output for a specific client

Uncompressing and converting encoding scheme of input

Thursday, January 31, 13

