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Singleton
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Warning

4

Simplest pattern
But has subtlest issues particularly in Java

Most controversial pattern
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Intent

Ensure a class only has one instance

Provide global point of access to single instance
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Singleton
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public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }
 
 public static Counter instance() {
  if (instance == null)
   instance = new Counter();
  return instance;
 }

 public int increase()  {return ++count;}
} 

One instance

Global access
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This version does not work correctly all the time. See later slides



Ruby Singleton
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class Counter
    private_class_method :new
    @@instance = nil

    def Counter.instance
        @@instance = new unless @@instance
        @@instance 
    end
    
    def increase
        @count = 0 unless @count
        @count = @count + 1
        @count
    end
end

require 'singleton'

class Counter
   include Singleton
    
    def increase
        @count = 0 unless @count
        @count = @count + 1
        @count
    end
end
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Some Uses

Java Security Manager

Logging a Server

Null Object
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Globals are Evil

Tuesday, March 19, 13



10

Why Singletons Are Controversial(Evil)

Singletons provide global access point for some service

Hidden dependencies

Is there a different design that does not need singletons 

Pass a reference
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Why Singletons Are Controversial(Evil)
Singletons allow you to limit creation of objects of a class

Should that be the responsibility of the class?

Class should do one thing

Use factory or builder to limit the creation
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Why Singletons Are Controversial(Evil)
Singletons tightly couple you to the exact type of the singleton object

No polymorphism

Hard to subclass
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Why Singletons Are Controversial(Evil)

Singletons carry state with them that last as long as the program lasts

Persistent state makes testing hard and error prone
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Why Singletons Are Controversial(Evil)

A Singleton today is a multiple tomorrow

SIngleton pattern makes it hard to change to allow multiple objects
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Why Singletons Are Controversial(Evil)

In Java Singletons are a lie

More on this later
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Singleton Implementation

Tuesday, March 19, 13



Why Not Use This?
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public class Counter {
 private static int count = 0;
  
 public static int increase()  {return ++count;}
} 

Tuesday, March 19, 13



Why Not Use This?
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public class Counter {
 private int count = 0;
 private Counter() { }

 public static Counter instance = new Counter();
  
 public int increase()  {return ++count;}
} 
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Very subtle the error here



Two Useful Features
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Lazy
Only created when needed

Thread safe 
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Recommended Implementation
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public class Counter {
 private int count = 0;
 private Counter() { }

 private static class SingletonHolder {
private final static Counter INSTANCE = new Counter();

    }
 public static Counter instance() {
   return SingletonHolder.INSTANCE;
 }

 public int increase()  {return ++count;}
} 
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Implementation due to Bill Pugh, found in Wikipedia, http://en.wikipedia.org/wiki/Singleton_pattern. It is thread-safe, lazy and 
works with all know versions of Java



Correct but not Lazy
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public class Counter {
 private int count = 0;
 protected Counter() { }

 private final static Counter INSTANCE = new 
Counter();

 public static Counter instance() {
   return INSTANCE;
 }

 public int increase()  {return ++count;}
} 
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Lazy, Thread safe with Overhead
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public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }
 
 public static synchronized Counter instance() {
  if (instance == null)
   instance = new Counter();
  return instance();
 }

 public int increase()  {return ++count;}
} 
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Double-Checked Locking does not work
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public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }
 
 public static Counter instance() {
  if (instance == null)

synchronize(this) {
if (instance == null)

  instance = new Counter();
}

  return instance();
 }

 public int increase()  {return ++count;}
} 
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See http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html



Java Templates & Singleton
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public class TemplateSingleton<Type> {
 Type foo;

 public static TemplateSingleton<Type> instance = 
new TemplateSingleton<Type>();

}

Does not compile
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When is a Singleton not a Singleton?When is a Singleton not a Singleton?
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When Java Garbage Collects Classes
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Turn off garbage collection of classes  (-Xnoclassgc)

Make sure there is always a reference to the class/instance

Singleton class can be garbage collected
Singleton loses any value it had

Solution
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When Multiple Java Class Loaders are Used
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When loaded by two different class loaders there will be two 
versions of the class

Some servlet engines use different class loader for each servlet

Using custom class loaders can cause this
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Purposely Reloading a Java Class
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Servlet engines can force a class to be reloaded
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Serialize and Deserialize Singleton Object
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One way to serialize a Java object is using ObjectOutputStream

Ruby Marshal.dump() will not marshal a singleton

Serialize the singleton
Deserialize the singleton
You now have two copies
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