
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2013

Doc 13 Singleton Pattern
March 19, 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Tuesday, March 19, 13

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Design Patterns: Elements of Resuable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 127-134

When is a Singleton not a Singleton, Joshua Fox, January 2001, http://
java.sun.com/developer/technicalArticles/Programming/singletons/

http://en.wikipedia.org/wiki/Singleton_pattern

The "Double-Checked Locking is Broken" Declaration, http://
www.cs.umd.edu/~pugh/java/memoryModel/
DoubleCheckedLocking.html

Use your Singletons wisely, http://www.ibm.com/developerworks/
webservices/library/co-single.html

Why Singletons are Evil, http://blogs.msdn.com/scottdensmore/archive/
2004/05/25/140827.aspx

Why Singletons Are Controversial, http://code.google.com/p/google-
singleton-detector/wiki/WhySingletonsAreControversial

Photographs used with permission from www.istockphoto.com

Tuesday, March 19, 13

http://java.sun.com/developer/technicalArticles/Programming/singletons/
http://java.sun.com/developer/technicalArticles/Programming/singletons/
http://java.sun.com/developer/technicalArticles/Programming/singletons/
http://java.sun.com/developer/technicalArticles/Programming/singletons/

3

Singleton

Tuesday, March 19, 13

Warning

4

Simplest pattern
But has subtlest issues particularly in Java

Most controversial pattern

Tuesday, March 19, 13

5

Intent

Ensure a class only has one instance

Provide global point of access to single instance

Tuesday, March 19, 13

Singleton

6

public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }

 public static Counter instance() {
 if (instance == null)
 instance = new Counter();
 return instance;
 }

 public int increase() {return ++count;}
}

One instance

Global access

Tuesday, March 19, 13

This version does not work correctly all the time. See later slides

Ruby Singleton

7

class Counter
 private_class_method :new
 @@instance = nil

 def Counter.instance
 @@instance = new unless @@instance
 @@instance
 end

 def increase
 @count = 0 unless @count
 @count = @count + 1
 @count
 end
end

require 'singleton'

class Counter
 include Singleton

 def increase
 @count = 0 unless @count
 @count = @count + 1
 @count
 end
end

Tuesday, March 19, 13

8

Some Uses

Java Security Manager

Logging a Server

Null Object

Tuesday, March 19, 13

9

Globals are Evil

Tuesday, March 19, 13

10

Why Singletons Are Controversial(Evil)

Singletons provide global access point for some service

Hidden dependencies

Is there a different design that does not need singletons

Pass a reference

Tuesday, March 19, 13

11

Why Singletons Are Controversial(Evil)
Singletons allow you to limit creation of objects of a class

Should that be the responsibility of the class?

Class should do one thing

Use factory or builder to limit the creation

Tuesday, March 19, 13

12

Why Singletons Are Controversial(Evil)
Singletons tightly couple you to the exact type of the singleton object

No polymorphism

Hard to subclass

Tuesday, March 19, 13

13

Why Singletons Are Controversial(Evil)

Singletons carry state with them that last as long as the program lasts

Persistent state makes testing hard and error prone

Tuesday, March 19, 13

14

Why Singletons Are Controversial(Evil)

A Singleton today is a multiple tomorrow

SIngleton pattern makes it hard to change to allow multiple objects

Tuesday, March 19, 13

15

Why Singletons Are Controversial(Evil)

In Java Singletons are a lie

More on this later

Tuesday, March 19, 13

16

Singleton Implementation

Tuesday, March 19, 13

Why Not Use This?

17

public class Counter {
 private static int count = 0;

 public static int increase() {return ++count;}
}

Tuesday, March 19, 13

Why Not Use This?

18

public class Counter {
 private int count = 0;
 private Counter() { }

 public static Counter instance = new Counter();

 public int increase() {return ++count;}
}

Tuesday, March 19, 13

Very subtle the error here

Two Useful Features

19

Lazy
Only created when needed

Thread safe

Tuesday, March 19, 13

Recommended Implementation

20

public class Counter {
 private int count = 0;
 private Counter() { }

 private static class SingletonHolder {
private final static Counter INSTANCE = new Counter();

 }
 public static Counter instance() {
 return SingletonHolder.INSTANCE;
 }

 public int increase() {return ++count;}
}

Tuesday, March 19, 13

Implementation due to Bill Pugh, found in Wikipedia, http://en.wikipedia.org/wiki/Singleton_pattern. It is thread-safe, lazy and
works with all know versions of Java

Correct but not Lazy

21

public class Counter {
 private int count = 0;
 protected Counter() { }

 private final static Counter INSTANCE = new
Counter();

 public static Counter instance() {
 return INSTANCE;
 }

 public int increase() {return ++count;}
}

Tuesday, March 19, 13

Lazy, Thread safe with Overhead

22

public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }

 public static synchronized Counter instance() {
 if (instance == null)
 instance = new Counter();
 return instance();
 }

 public int increase() {return ++count;}
}

Tuesday, March 19, 13

Double-Checked Locking does not work

23

public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }

 public static Counter instance() {
 if (instance == null)

synchronize(this) {
if (instance == null)

 instance = new Counter();
}

 return instance();
 }

 public int increase() {return ++count;}
}

Tuesday, March 19, 13

See http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Java Templates & Singleton

24

public class TemplateSingleton<Type> {
 Type foo;

 public static TemplateSingleton<Type> instance =
new TemplateSingleton<Type>();

}

Does not compile

Tuesday, March 19, 13

25

When is a Singleton not a Singleton?When is a Singleton not a Singleton?

Tuesday, March 19, 13

When Java Garbage Collects Classes

26

Turn off garbage collection of classes (-Xnoclassgc)

Make sure there is always a reference to the class/instance

Singleton class can be garbage collected
Singleton loses any value it had

Solution

Tuesday, March 19, 13

When Multiple Java Class Loaders are Used

27

When loaded by two different class loaders there will be two
versions of the class

Some servlet engines use different class loader for each servlet

Using custom class loaders can cause this

Tuesday, March 19, 13

Purposely Reloading a Java Class

28

Servlet engines can force a class to be reloaded

Tuesday, March 19, 13

Serialize and Deserialize Singleton Object

29

One way to serialize a Java object is using ObjectOutputStream

Ruby Marshal.dump() will not marshal a singleton

Serialize the singleton
Deserialize the singleton
You now have two copies

Tuesday, March 19, 13

