
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2014
Doc 2 Big Ball of Mud

Jan 28, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this 
document.

Tuesday, January 28, 14

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml


What Compsci textbooks don't tell you

2

What don't they tell you?

Tuesday, January 28, 14

nearly every sample program in every textbook is a perfect and well-thought-out specimen, virtually no software out in the wild 
is, and this is rarely acknowledged



What are the causes of bad Software?

3

Tuesday, January 28, 14

bad programmers, too good programmers, bad laziness, time



What is the simple fix?

4

Tuesday, January 28, 14

Comments



What is a Big Ball of Mud?

5

Tuesday, January 28, 14

How many have worked on a Big ball of mud?
What caused it?
What was the impact of the Big ball of mud?



What Forces Lead to Big Ball of Mud

6

Tuesday, January 28, 14

Time, Cost, Experience, Skill, Visibility, Complexity, Change, Scale



Patterns

7

Big Ball of Mud
Throwaway Code
Piecemeal Growth
Keep it Working
Shearing Layers
Sweeping it Under the Rug
Reconstruction

Tuesday, January 28, 14



Big Ball of Mud

8

You need to deliver quality software on time, and under budget.

Therefore, focus first on features and functionality, then focus on architecture 
and performance.

Tuesday, January 28, 14



Enemy of Big Ball of Mud

9

Top down design

Hire good architects 

Tuesday, January 28, 14



10

Variable and function names
uninformative

Functions themselves may make extensive use of 
global variables,
long lists of poorly defined parameters. 

The function themselves are 
lengthy and convoluted, 
perform several unrelated tasks. 

The programmer’s intent is next to impossible to discern.

Problems

Tuesday, January 28, 14



11

We built the most complicated system that can possible work 

Tuesday, January 28, 14



Three ways to deal with BIG BALLS OF MUD

12

Tuesday, January 28, 14

Keep it healthy - expansion then refactoring
Throw it away
Live with it

http://www.laputan.org/mud/mud.html#BigBallOfMud
http://www.laputan.org/mud/mud.html#BigBallOfMud


Extreme Programming Practices

13

Pair programming
Planning game
Test driven development
Customer part of development team
Continuous integration
Refactoring or design improvement
Small releases
Coding standards
Collective code ownership
Simple design
System metaphor
Sustainable pace

Tuesday, January 28, 14

http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Refactoring


Throwaway Code

14

You need an immediate fix for a small problem, or a quick prototype or proof of concept.

Therefore, produce, by any means available, simple, expedient, disposable code that 
adequately addresses just the problem at-hand.

Tuesday, January 28, 14



15

Why do we need throwaway code?

What the main problem with throwaway code?

Tuesday, January 28, 14



16

Piecemeal Growth
Users’ needs change with time.

Therefore, incrementally address forces that encourage change and growth.

Allow opportunities for growth to be exploited locally, as they occur. 

Refactor unrelentingly.

Tuesday, January 28, 14



What is the main problem with Piecemeal 
Growth?

17

Tuesday, January 28, 14



Keep it Working

18

Maintenance needs have accumulated, but an overhaul is unwise, since you 
might break the system.

Therefore, do what it takes to maintain the software and keep it going. Keep it 
working.

Tuesday, January 28, 14



19

How do Piecemeal Growth and Keep it Working lead to a ball of mud?

How can we use Piecemeal Growth and Keep it Working and avoid 
the ball of mud?

Is it advisable to use Piecemeal Growth and Keep it Working?

Tuesday, January 28, 14



20

Shearing Layers
Different artifacts change at different rates

Therefor 
Factor your system so that artifacts that change at similar rates are together

Tuesday, January 28, 14



Why?

21

Put things that change at different rates in different places?

Example? 

Tuesday, January 28, 14

adaptability & stability



22

Sweep it Under the Rug
Overgrown, tangled, haphazard spaghetti code is hard to comprehend, repair, 
or extend, and tends to grow even worse if it is not somehow brought under 
control.

Therefore, if you can’t easily make a mess go away, at least cordon it off. 

This restricts the disorder to a fixed area, keeps it out of sight, and can set the 
stage for additional refactoring.

Tuesday, January 28, 14



Reconstruction

23

Your code has declined to the point where it is beyond repair, or even comprehension.

Therefore, throw it away and start over.

Tuesday, January 28, 14



24

"Plan to throw one away, you will anyway"

Fred Brooks

Tuesday, January 28, 14



25

Problems with Starting Over

Cost

Time

Reintroduce bugs

Few features

Tuesday, January 28, 14


