
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2014

Doc 5 Assignment 1, Strategy
Feb 11, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Tuesday, February 11, 14

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

public class MinHeap {
public Node root;

Tuesday, February 11, 14

3

public class MinHeap {
public Node root;

Tuesday, February 11, 14

4

public class MinHeap {
private Node root;

public Node root() {
return root;

}

Tuesday, February 11, 14

5

public class MinHeap {
private Node root;

public Node root() {
return root;

}

Tuesday, February 11, 14

6

public class MinHeap {
private Node root;

public Node root() {
return root;

}

public void insert(Node root, String element) {
blah

}

MinHeap test = new MinHeap();
Node root = test.root();
test.insert(root, "cat");

Tuesday, February 11, 14

7

public class MinHeap {
private Node root;

public void insertNode(Node newElement) {
blah, blah , etc

}

MinHeap test = new MinHeap();
Node element = new Node("cat");
test.insertNode(element);

Tuesday, February 11, 14

8

public class MinHeap {
private Node root;

public void insertNode(Node newElement) {
blah, blah , etc

}

MinHeap test = new MinHeap();
Node element = new Node("cat");
test.insertNode(element);

Tuesday, February 11, 14

9

public class MinHeap {
private Node root;

public void insertNode(String element) {
blah, blah , etc

}

Tuesday, February 11, 14

10

public class MinHeap {
private Node root;

public void insertNode(String element) {
blah, blah , etc

}

Tuesday, February 11, 14

11

What is the name of the method used to add something to a collection in Java?

What does the method return?

Tuesday, February 11, 14

12

public class MinHeap {

public int sizeOfHeap() {
blah
return result;

}

What name should the method have?

Tuesday, February 11, 14

13

What type of collection is a heap?

Tuesday, February 11, 14

14

Why does it only hold Strings?

Tuesday, February 11, 14

15

public class MinHeap {
private static Node root;

MinHeap first = new MinHeap();
MinHeap second = new MinHeap();
first.add("cat");
second.add("dog");
int wrong = second.size();

What value does wrong have?
What value should it be

Tuesday, February 11, 14

16

public class MinHeap {
private static Node root;

MinHeap first = new MinHeap();
MinHeap second = new MinHeap();
first.add("cat");
second.add("dog");
int wrong = second.size();

What value does wrong have?
What value should it be

Tuesday, February 11, 14

17

public class MinHeap {

public void display() {
blah;
System.out.println(currentNode.value);
blah;

}

Tuesday, February 11, 14

18

public class MinHeap {

public void display() {
blah;
System.out.println(currentNode.value);
blah;

}

Tuesday, February 11, 14

19

public class MinHeap {

public String display() {
blah;
blah;
return result;

}

How is this diplaying anything?

Tuesday, February 11, 14

20

public class MinHeap {

public String display() {
blah;
blah;
return result;

}

What do we call the method that returns
a string representation of the object?

Tuesday, February 11, 14

21

public class MinHeap {

public String toString() {
blah;
blah;
return result;

}

Tuesday, February 11, 14

22

public class MinHeap {

public ArrayList display() {
blah;
blah;
return result;

}

More useful format

Tuesday, February 11, 14

23

public class MinHeap {

public <T> t[] toArray(T[] a) {
blah;
blah;
return result;

}

The Java collection standard

Tuesday, February 11, 14

Abstraction?

24

public class MinHeap {

public void displayWordsEndingInIng() {
blah;
blah;

}

Tuesday, February 11, 14

25

public class MinHeap {
private Node root;
private String ingWords

public void display() {
blah;
ingWords = ingWords + currentNode.value;
blah;

}

public String getIngWords() {
return ingWords;

}

Not part of class state

Tuesday, February 11, 14

26

public class MinHeap {

public Iterator iterator() {
blah;
blah;

}

MinHeap test = new MinHeap();
//add elements

for (Iterator elements = test.iterator; elements.hasNext();) {
String item = elements.next();
if (some condition on item) {

}
}

Tuesday, February 11, 14

Duh Comments

27

public class MinHeap {

//Declare fields
private Node root;

//constructor
public MinHeap() { blah }

// return the root
public Node getRoot() { blah }

}

Tuesday, February 11, 14

What have we lost?

28

public class MinHeap {

private Node root;

public MinHeap() { blah }

public Node getRoot() { blah }
}

Tuesday, February 11, 14

Data Class

29

public Node {
public String value;
public Node left;
public Node right;

}

Tuesday, February 11, 14

Where are the Operations?

30

public Node {
private String value;
private Node left;
private Node right;

public String getValue() { return value;}
public void setValue(String x) {value = x;}

etc.
}

Tuesday, February 11, 14

Find all the Helper methods in MinHeap

31

public class MinHeap {

private int getHeight(Node aNode) {
if (aNode.left == null & aNode.right == null)

return 1;
if (aNode.left == null)

return 1;
return 1 + Math.max(getHeight(aNode.left(), getHeight(aNode.right());

}

Tuesday, February 11, 14

Why not put it in Node class?

32

public class Node {

public int height() {
if (left == null & right == null)

return 1;
if (left == null)

return 1;
return 1 + Math.max(left.height(), right.height());

}

Tuesday, February 11, 14

Store the value

33

public class Node {
private int height;

public int height() {
return height()

}

Tuesday, February 11, 14

Cache the value

34

public class Node {
private static final NOT_SET = -1;
private int height;

public boolean add(String value) {
height = NO_SET; //adding may change height
blah blah

}

public int height() {
if (height == NOT_SET)

height = computeHeight();
return height;

}

private int computeHeight() { blah blah }

Tuesday, February 11, 14

35

Strategy Pattern

Tuesday, February 11, 14

Favor
Composition

over
Inheritance

36

Tuesday, February 11, 14

37

Sorted
Reverse Sorted
Random

Orderable List

Tuesday, February 11, 14

OrderableList

SortedList ReverseList RandomList

38

Tuesday, February 11, 14

39

One size does not fit all

Tuesday, February 11, 14

40

Order
Sorted
Reverse Sorted
Random

Threads
Synchronized
Unsynchronized

Mutability
Mutable
Non-mutable

Issue 1 - Orthogonal Features

Tuesday, February 11, 14

41

OrderableList

SortedList ReverseList RandomList

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Tuesday, February 11, 14

42

Issue 2 - Flexibility

Tuesday, February 11, 14

43

OrderableList x = new OrderableList();
x.makeSorted();
x.add(foo);
x.add(bar):
x.makeRandom();

Change behavior at runtime

Tuesday, February 11, 14

44

Configure objects behavior at runtime

Tuesday, February 11, 14

45

Algorithm

Sorted Random ReverseSorted

class OrderableList {
 private Object[] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
 orderer = x;
 }

 public void add(Object element) {
 elements = ordered.add(elements,element);
 }

Strategy Pattern

Tuesday, February 11, 14

Structure

46

contextInterface()

Context

algorithmInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

Tuesday, February 11, 14

47

The algorithm is the operation

Context contains the data

How does this work?

Tuesday, February 11, 14

48

Prime Directive
Data + Operations

Tuesday, February 11, 14

49

How does Strategy Get the Data?

Pass needed data as parameters in strategy method

Give strategy object reference to context
Strategy extracts needed data from context

Tuesday, February 11, 14

50

Example - Java Layout Manager

import java.awt.*;
class FlowExample extends Frame {

 public FlowExample(int width, int height) {
 setTitle("Flow Example");
 setSize(width, height);
 setLayout(new FlowLayout(FlowLayout.LEFT));

 for (int label = 1; label < 10; label++)
 add(new Button(String.valueOf(label)));
 show();
 }

 public static void main(String args[]) {
 new FlowExample(175, 100);
 new FlowExample(175, 100);
 }
}

Tuesday, February 11, 14

Example - Smalltalk Sort blocks

51

| list |
list := #(1 6 2 3 9 5) asSortedCollection.
Transcript
 print: list;
 cr.
list sortBlock: [:x :y | x > y].
Transcript
 print: list;
 cr;
 flush.

Tuesday, February 11, 14

Costs

52

Clients must be aware of different Strategies

Communication overhead between Strategy and Context

Increase number of objects

Tuesday, February 11, 14

Benefits

53

Alternative to subclassing of Context

Eliminates conditional statements

Replace in Context code like:

 switch (flag) {
 case A: doA(); break;
 case B: doB(); break;
 case C: doC(); break;
 }

 With code like:

 strategy.do();

Gives a choice of implementations

Tuesday, February 11, 14

Refactoring: Replace Conditional Logic with
Strategy

54

Conditional logic in a method controls which of
several variants of a calculation are executed

Create a Strategy for each variant and make the
method delegate the calculation to a Strategy instance

so

Tuesday, February 11, 14

Replace Conditional Logic with Strategy

55

class Foo {
public void bar() {

switch (flag) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}
}

}

class Foo {
private strategy;
public void bar() {

strategy.do(data);
}

}

Tuesday, February 11, 14

