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public class MinHeap {
public Node root;
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public class MinHeap {
public Node root;
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public class MinHeap {
private Node root;

public Node root() {
return root;

}
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public class MinHeap {
private Node root;

public Node root() {
return root;

}
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public class MinHeap {
private Node root;

public Node root() {
return root;

}

public void insert(Node root, String element) {
blah

}

MinHeap test = new MinHeap();
Node root = test.root();
test.insert(root, "cat");
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public class MinHeap {
private Node root;

public void insertNode(Node newElement) {
blah, blah , etc

}

MinHeap test = new MinHeap();
Node element = new Node("cat");
test.insertNode(element);
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public class MinHeap {
private Node root;

public void insertNode(Node newElement) {
blah, blah , etc

}

MinHeap test = new MinHeap();
Node element = new Node("cat");
test.insertNode(element);
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public class MinHeap {
private Node root;

public void insertNode(String element) {
blah, blah , etc

}
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public class MinHeap {
private Node root;

public void insertNode(String element) {
blah, blah , etc

}
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What is the name of the method used to add something to a collection in Java?

What does the method return?
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public class MinHeap {

public int sizeOfHeap() {
blah
return result;

}

What name should the method have?
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What type of collection is a heap?
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Why does it only hold Strings?
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public class MinHeap {
private static Node root;

MinHeap first = new MinHeap();
MinHeap second = new MinHeap();
first.add("cat");
second.add("dog");
int wrong = second.size();

What value does wrong have?
What value should it be
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public class MinHeap {
private static Node root;

MinHeap first = new MinHeap();
MinHeap second = new MinHeap();
first.add("cat");
second.add("dog");
int wrong = second.size();

What value does wrong have?
What value should it be
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public class MinHeap {

public void display() {
blah;
System.out.println( currentNode.value);
blah;

}
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public class MinHeap {

public void display() {
blah;
System.out.println( currentNode.value);
blah;

}
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public class MinHeap {

public String display() {
blah;
blah;
return result;

}

How is this diplaying anything?
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public class MinHeap {

public String display() {
blah;
blah;
return result;

}

What do we call the method that returns
a string representation of the object?
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public class MinHeap {

public String toString() {
blah;
blah;
return result;

}
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public class MinHeap {

public ArrayList display() {
blah;
blah;
return result;

}

More useful format
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public class MinHeap {

public <T> t[ ] toArray(T[ ] a) {
blah;
blah;
return result;

}

The Java collection standard 
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Abstraction?
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public class MinHeap {

public void displayWordsEndingInIng( ) {
blah;
blah;

}
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public class MinHeap {
private Node root;
private String ingWords

public void display() {
blah;
ingWords = ingWords + currentNode.value;
blah;

}

public String getIngWords() {
return ingWords;

}

Not part of class state
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public class MinHeap {

public Iterator iterator( ) {
blah;
blah;

}

MinHeap test = new MinHeap();
//add elements

for (Iterator elements = test.iterator; elements.hasNext();) {
String item = elements.next();
if (some condition on item) {

}
}
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Duh Comments
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public class MinHeap {

//Declare fields
private Node root;

//constructor
public MinHeap() { blah }

// return the root
public Node getRoot() { blah }

}
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What have we lost?
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public class MinHeap {

private Node root;

public MinHeap() { blah }

public Node getRoot() { blah }
}
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Data Class

29

public Node {
public String value;
public Node left;
public Node right;

}
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Where are the Operations?
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public Node {
private String value;
private Node left;
private Node right;

public String getValue() { return value;}
public void setValue(String x) {value = x;}

etc.
}

Tuesday, February 11, 14



Find all the Helper methods in MinHeap
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public class MinHeap {

private int getHeight(Node aNode) { 
if (aNode.left == null & aNode.right == null)

return 1;
if (aNode.left == null)

return 1;
return 1 + Math.max(getHeight(aNode.left(), getHeight(aNode.right());

}
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Why not put it in Node class?
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public class Node {

public int height() { 
if (left == null & right == null)

return 1;
if (left == null)

return 1;
return 1 + Math.max(left.height(), right.height());

}
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Store the value

33

public class Node {
private int height;

public int height() { 
return height()

}
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Cache the value
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public class Node {
private static final NOT_SET = -1;
private int height;

public boolean add(String value) {
height = NO_SET; //adding may change height
blah blah

}

public int height() { 
if (height == NOT_SET) 

height = computeHeight();
return height;

}

private int computeHeight() { blah blah }
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Strategy Pattern
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Favor
Composition

over
Inheritance
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Sorted
Reverse Sorted
Random

Orderable List
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OrderableList

SortedList ReverseList RandomList
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One size does not fit all

Tuesday, February 11, 14



40

Order
Sorted
Reverse Sorted
Random

Threads
Synchronized
Unsynchronized

Mutability
Mutable
Non-mutable

Issue 1 - Orthogonal Features
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OrderableList

SortedList ReverseList RandomList

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch
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Issue 2 - Flexibility
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OrderableList x = new OrderableList();
x.makeSorted();
x.add(foo);
x.add(bar):
x.makeRandom(); 

Change behavior at runtime
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Configure objects behavior at runtime
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Algorithm

Sorted Random ReverseSorted

class OrderableList {
 private Object[ ] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
  orderer = x;
 }

   public void add(Object element) {
      elements = ordered.add(elements,element);
   }

Strategy Pattern
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Structure
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contextInterface()

Context

algorithmInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB
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The algorithm is the operation

Context contains the data

How does this work?
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Prime Directive
Data + Operations
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How does Strategy Get the Data?

Pass needed data as parameters in strategy method

Give strategy object reference to context
Strategy extracts needed data from context 
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Example - Java Layout Manager

import java.awt.*;
class  FlowExample  extends Frame  {
   
 public FlowExample( int  width, int height ) {
  setTitle( "Flow Example" );
  setSize( width, height );
  setLayout( new FlowLayout( FlowLayout.LEFT) );
      
  for ( int label = 1; label < 10; label++ )
   add( new Button( String.valueOf( label ) ) );
  show();
 }
 
 public  static  void  main( String  args[] ) {
  new  FlowExample( 175, 100 );
  new  FlowExample( 175, 100 );
 }
}
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Example - Smalltalk Sort blocks

51

| list |
list := #( 1 6 2 3 9 5 ) asSortedCollection.
Transcript 
 print: list;
 cr.
list sortBlock: [:x :y | x > y].
Transcript 
 print: list;
 cr;
 flush.
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Costs
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Clients must be aware of different Strategies

Communication overhead between Strategy and Context

Increase number of objects
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Benefits
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Alternative to subclassing of Context

Eliminates conditional statements

Replace in Context code like:

  switch  ( flag ) {
   case A: doA(); break;
   case B: doB(); break;
   case C: doC(); break;
  }

  With code like:

  strategy.do();

Gives a choice of implementations
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Refactoring: Replace Conditional Logic with
Strategy

54

Conditional logic in a method controls which of 
several variants of a calculation are executed

Create a Strategy for each variant and make the 
method delegate the calculation to a Strategy instance

so
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Replace Conditional Logic with Strategy
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class Foo {
public void bar() {

switch  ( flag ) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}
}

}

class Foo {
private strategy;
public void bar() {

strategy.do(data);
}

}
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