
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2014

Doc 6 Iterator, Visitor, Strategy
Feb 13, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, February 13, 14

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Iterator Pattern

Provide a way to access the elements of a collection sequentially
without exposing its underlying representation

Thursday, February 13, 14

Iterator Solution

3

Java
LinkedList<Strings> strings = new LinkedList<Strings>();

code to add strings

for (String element : strings) {
 if (element.size % 2 == 0)
 System.out.println(element);
}

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);
 }
}

Thursday, February 13, 14

This is 1/2 the way to a good solution.

Ruby Iterator Examples

4

a.each {|x| puts x}

1
2
3
4

result = a.collect {|x| x + 10}
puts result

11
12
13
14

result = a.find_all {|x| x > 2 }
puts result

3
4

puts a.any? {|x| x > 2} true

puts a.detect {|x| x > 2 } 3

 a = [1, 2, 3, 4]

Thursday, February 13, 14

Ruby has a richer set of iterators than Java. Smalltalk, which inspired Ruby's iterators, has a richer set of iterators that Ruby.
Perhaps the language that replaces Ruby will match the power that Smalltalk had 20 years ago.

Pattern Parts

5

Intent

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample Code

Thursday, February 13, 14

Iterator Structure

6

CreateIterator()

Aggregate

CreateIterator()

ConcreteAggregate

First()

Next()

IsDone()

CurrentItem()

Iterator

return new ConcreteIterator(this)

Client

ConcreteIterator

Thursday, February 13, 14

Issue - What is the big deal?

7

var numbers = new LinkedList();

code to add numbers

Iterator list = numbers.iterator();
while (list.hasNext()) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
 if ((b % 2) == 0)

 System.out.println(x);
}

var numbers = new LinkedList();

code to add numbers

for (int k =0; k < numbers.size(); k++) {
 Integer a = (Integer) numbers.get(k);
 int b = a.intValue();
 if ((b % 2) == 0)

 System.out.println(x);
}

Thursday, February 13, 14

Java's Enumerations and iterators were awkward to use. C# pushed Sun to add better syntax.

Issues - Concrete vs. Polymorphic Iterators

8

Concrete
Reader iterator = new StringReader("cat");
int c;
while (-1 != (c = iterator.read()))
 System.out.println((char) c);

Polymorphic
Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
while (list.hasNext())
 System.out.println(list.next());

Memory leak issue in C++, Why?

Thursday, February 13, 14

Issue - Who Controls the Iteration?

9

External (Active)
var numbers = new LinkedList();

code to add numbers

Vector evens = new Vector();
Iterator list = numbers.iterator();
 while (list.hasNext()) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
 if ((b % 2) == 0)
 evens.add(a);
 }

Internal (Passive)
numbers = LinkedList.new

code to add numbers

evens = numbers.find_all { |element| element.even? }

Thursday, February 13, 14

Issue - Who Defines the Traversal Algorithm

10

Object being iterated Iterator

Thursday, February 13, 14

Issue - Robustness

11

What happens when items are added/removed from the iteratee while an iterator exists?

Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
listOfStudents.add(new Student("Roger"));

list.hasNext(); //What happens here?

Thursday, February 13, 14

12

Visitor Pattern

Thursday, February 13, 14

Visitor

13

Intent
Represent an operation to be performed on the
elements of an object structure

Visitor lets you define a new operation without
changing the classes of the elements on which it
operates

Thursday, February 13, 14

Tree Example

14

class Node { ... }

class BinaryTreeNode extends Node {...}

class BinaryTreeLeaf extends Node {...}

class Tree { ... }

Thursday, February 13, 14

Tree Printing

15

HTML Print

PDF Print

TeX Print

RTF Print

Others likely in future

Operations are complex

Not part of BST abstraction

Need to traverse tree

Do different things on different types of nodes

Thursday, February 13, 14

First Attempt

16

Create Printer Classes

Use iterator to access all elements

Process each element

Thursday, February 13, 14

First Attempt

17

class TreePrinter {

public String printTree (Tree toPrint) {
Iterator nodes = toPrint.iterator();
while (nodes.hasNext()) {

Node current = nodes.next();
if (current.isLeafNode())

printLeafNode(current);
else if (current.isInternalNode())

printInternalNode(current);
}

}

private String printLeafNode(Node current) { blah }

private String printInternalNode(Node current) { blah }

Thursday, February 13, 14

First Attempt - Issue

18

class TreePrinter {

public String printTree (Tree toPrint) {
Iterator nodes = toPrint.iterator();
while (nodes.hasNext()) {

Node current = nodes.next();
if (current.isLeafNode())

printLeafNode(current);
else if (current.isInternalNode())

printInternalNode(current);
}

}

private String printLeafNode(Node current) { blah }

private String printInternalNode(Node current) { blah }

Hidden case statement

If add different type
of node ...

Thursday, February 13, 14

Second Attempt - Overloaded Method

19

class TreePrinter {

public String printTree (Tree toPrint) {
Iterator nodes = toPrint.iterator();
while (nodes.hasNext()) {

Node current = nodes.next();
printNode(current);

}
}

public String printNode(BinaryTreeNode current) { blah }

public String printNode(BinaryTreeLeaf current) { blah }

Thursday, February 13, 14

Overloaded Methods

20

Which overloaded method to run

Selected at compile time

Based on declared type of parameter

Does not use runtime information

Thursday, February 13, 14

Second Attempt - Overloaded Method

21

class TreePrinter {

public String printTree (Tree toPrint) {
Iterator nodes = toPrint.iterator();
while (nodes.hasNext()) {

Node current = nodes.next();
printNode(current);

}
}

public String printNode(BinaryTreeNode current) { blah }

public String printNode(BinaryTreeLeaf current) { blah }

Compile Error

Thursday, February 13, 14

Still Need case statment

22

Visitor pattern converts

Runtime case statement into Compile time case statement

So if add new type of Node compiler tells us i fwe forget to change case statement

Thursday, February 13, 14

Key Idea

23

Receiver of method is determined at runtime

x.toString();

Send a message to Nodes to determine what type of node we have

Thursday, February 13, 14

Accept Method

24

class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeNode(this);
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeLeaf(this);
 }
}

class Node {
abstract public void accept(Visitor aVisitor);

}

Thursday, February 13, 14

Visitor

25

abstract class Visitor {

 abstract void visitBinaryTreeNode(BinaryTreeNode);

 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);
}

class HTMLPrintVisitor extends Visitor {

 public void visitBinaryTreeNode(BinaryTreeNode x) {
 HTML print code here
 }

 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}
}

Thursday, February 13, 14

26

Visitor printer = new HTMLPrintVisitor();
Tree toPrint;

Iterator nodes = toPrint.iterator();
while (nodes.hasNext()) {

Node current = nodes.next();
current.accept(printer);

}
Node object calls correct
method in Printer

Thursday, February 13, 14

Tree Example

27

class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeNode(this);
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeLeaf(this);
 }
}

abstract class Visitor {
 abstract void visitBinaryTreeNode(BinaryTreeNode);
 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);
}

class HTMLPrintVisitor extends Visitor {
 public void visitBinaryTreeNode(BinaryTreeNode x) {
 HTML print code here
 }
 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}
}

Put operations into separate object - a visitor

Pass the visitor to each element in the structure

The element then activates the visitor

Visitor performs its operation on the element

Each visitX method only deals with on type of element

Thursday, February 13, 14

Tree Example

28

Visitor

Thursday, February 13, 14

Double Dispatch

29

Note that a visit to one node requires two method calls

 Node example = new BinaryTreeLeaf();
 Visitor traveler = new HTMLPrintVisitor();
 example.accept(traveler);

BinaryTreeLeaf HTMLPrintVisitor

example.accept(traveler)

traveler.visitLeafNode(this)

Thursday, February 13, 14

Issue - Who does the traversal?

30

Visitor

Elements in the Structure

Iterator

Thursday, February 13, 14

When to Use the Visitor

31

Have many classes of objects with differing interfaces, and you want to perform
operations on these objects that depend on their concrete classes

When many distinct and unrelated operations need to be preformed on objects in
an object structure and you want to avoid cluttering the classes with these
operations

When the classes defining the structure rarely change, but you often want to
define new operations over the structure

Thursday, February 13, 14

Consequences

32

Visitors makes adding new operations easier

Visitors gathers related operations, separates
unrelated ones

Adding new ConcreteElement classes is hard

Visiting across class hierarchies

Accumulating state

Breaking encapsulation

Thursday, February 13, 14

Avoiding the accept() method

33

Visitor pattern requires elements to have an accept method

Sometimes this is not possible

 You don’t have the source for the elements

Aspect Oriented Programming

AspectJ eleminates the need for an accept method in aspect oriented Java

AspectS provides a similar process for Smalltalk

Thursday, February 13, 14

Clojure, Lisp & Multi-methods

34

while (nodes.hasNext()) {
Node current = nodes.next();
printNode(current);

}

Multi-methods in Clojure do select overloaded method
At run-time
Based on argument type

No need for visitor pattern

Thursday, February 13, 14

Example - Magritte

35

Web applications have data (domain models)

We need to
 Display the data
 Enter the data
 Validate data
 Store Data

Thursday, February 13, 14

Magritte

36

For each field in a domain model (class) provide a description

Description contains
 Data type Display string
 Field name Constraints

descriptionFirstName
 ^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)
 beRequired;
 yourself.

descriptionBirthday
 ^ (MADateDescription auto: 'birthday' label: 'Birthday' priority: 70)
 between:(Date year: 1900) and:Datetoday;
 yourself

Thursday, February 13, 14

Magritte

37

Each domain model has a collection of descriptions

Different visitors are used to

 Generate html to display data

 Generate form to enter the data

 Validate data from form

 Save data in database

Thursday, February 13, 14

Sample Page

38

 editor := (Person new asComponent)
 addValidatedSwitch;
 yourself.
 result := self call: editor.

Thursday, February 13, 14

http://127.0.0.1:8008/personeditor
http://127.0.0.1:8008/personeditor

Refactoring: Move Accumulation to Visitor

39

A method accumulates information from heterogenous classes

Move the accumulation task to a Visitor that can visit each class to
accumulate the information

so

Thursday, February 13, 14

See Refactoring to Patterns, Kerievsky, 2005, pp 320-338 for details

40

Strategy Pattern

Thursday, February 13, 14

Favor
Composition

over
Inheritance

41

Thursday, February 13, 14

42

Sorted
Reverse Sorted
Random

Orderable List

Thursday, February 13, 14

OrderableList

SortedList ReverseList RandomList

43

Thursday, February 13, 14

44

One size does not fit all

Thursday, February 13, 14

45

Order
Sorted
Reverse Sorted
Random

Threads
Synchronized
Unsynchronized

Mutability
Mutable
Non-mutable

Issue 1 - Orthogonal Features

Thursday, February 13, 14

46

OrderableList

SortedList ReverseList RandomList

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Thursday, February 13, 14

47

Issue 2 - Flexibility

Thursday, February 13, 14

48

OrderableList x = new OrderableList();
x.makeSorted();
x.add(foo);
x.add(bar):
x.makeRandom();

Change behavior at runtime

Thursday, February 13, 14

49

Configure objects behavior at runtime

Thursday, February 13, 14

50

Algorithm

Sorted Random ReverseSorted

class OrderableList {
 private Object[] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
 orderer = x;
 }

 public void add(Object element) {
 elements = ordered.add(elements,element);
 }

Strategy Pattern

Thursday, February 13, 14

Structure

51

contextInterface()

Context

algorithmInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

Thursday, February 13, 14

52

The algorithm is the operation

Context contains the data

How does this work?

Thursday, February 13, 14

53

Prime Directive
Data + Operations

Thursday, February 13, 14

54

How does Strategy Get the Data?

Pass needed data as parameters in strategy method

Give strategy object reference to context
Strategy extracts needed data from context

Thursday, February 13, 14

55

Example - Java Layout Manager

import java.awt.*;
class FlowExample extends Frame {

 public FlowExample(int width, int height) {
 setTitle("Flow Example");
 setSize(width, height);
 setLayout(new FlowLayout(FlowLayout.LEFT));

 for (int label = 1; label < 10; label++)
 add(new Button(String.valueOf(label)));
 show();
 }

 public static void main(String args[]) {
 new FlowExample(175, 100);
 new FlowExample(175, 100);
 }
}

Thursday, February 13, 14

Example - Smalltalk Sort blocks

56

| list |
list := #(1 6 2 3 9 5) asSortedCollection.
Transcript
 print: list;
 cr.
list sortBlock: [:x :y | x > y].
Transcript
 print: list;
 cr;
 flush.

Thursday, February 13, 14

Costs

57

Clients must be aware of different Strategies

Communication overhead between Strategy and Context

Increase number of objects

Thursday, February 13, 14

Benefits

58

Alternative to subclassing of Context

Eliminates conditional statements

Replace in Context code like:

 switch (flag) {
 case A: doA(); break;
 case B: doB(); break;
 case C: doC(); break;
 }

 With code like:

 strategy.do();

Gives a choice of implementations

Thursday, February 13, 14

Refactoring: Replace Conditional Logic with
Strategy

59

Conditional logic in a method controls which of
several variants of a calculation are executed

Create a Strategy for each variant and make the
method delegate the calculation to a Strategy instance

so

Thursday, February 13, 14

Replace Conditional Logic with Strategy

60

class Foo {
public void bar() {

switch (flag) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}
}

}

class Foo {
private strategy;
public void bar() {

strategy.do(data);
}

}

Thursday, February 13, 14

See Refactoring to Patterns, Kerievsky, 2005, pp 129-143 for detail steps

