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Java 8
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Target Release Date: March 18, 2014

New Features
New Time, Date & Calendar classes
Improvements to Cryptographic classes
Nashorn JavaScript Engine
Concurrency Improvements

Accumulators, Adders
Default Methods
Functional language Features

Lambda Expressions
Collection Streams (internal iterators)
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Lambda Expression
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Anonymous Function

(Integer a, Integer b) -> a + b

arguments body

(Integer start, Integer stop) -> {
for (int k = start; k < stop; k++)

System.out.println(k);
}
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Short Version of Lambda Syntax
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(Integer a, Integer b) -> a + b(String text) -> text.length();

( a, b) -> a + btext -> text.length();
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Using Lambdas
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Function<String,Integer> length =  text -> text.length();
int nameLength = length.apply("Roger Whitney");

BiFunction<Integer,Integer,Integer> adder = ( a, b) -> a + b;
int sum = adder.apply(1, 2);
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Other Types of Lamdas
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  Predicate<Integer> isLarge =  value -> value > 100;
  if (isLarge.test(59))
   System.out.println("large");

  Consumer<String> print = text -> System.out.println(text);
  print.accept("hello World");

 int size = xxx;
  Supplier<List> listType = size > 100 ? (()-> new ArrayList()): (() -> new Vector());
  List elements = listType.get();
  System.out.println(elements.getClass().getName());
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Lambda Types
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Predicate<T> -- a boolean-valued property of an object
Consumer<T> -- an action to be performed on an object
Function<T,R> -- a function transforming a T to a R
Supplier<T> -- provide an instance of a T (such as a factory)
UnaryOperator<T> -- a function from T to T
BinaryOperator<T> -- a function from (T, T) to T

New - See java.util.function Interfaces

java.lang.Runnable
java.util.concurrent.Callable
java.security.PrivilegedAction
java.util.Comparator
java.io.FileFilter
java.beans.PropertyChangeListener
etc.

Pre-existing
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Functional Interfaces
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Interface with one method

Can be used to hold a lambda

java.lang.Runnable

void run()
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Runnnable Example
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Runnable test = () -> System.out.println("hello from thread");
Thread example = new Thread(test);
example.start();
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OnClickListener Example
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button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View source) {
  makeToast();
 }
});

button.setOnClickListener( () -> makeToast());
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Internal Iterator - forEach
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String[] rawData = {"cat", "can", "bat", "rat"};

List<String> data = Arrays.asList(rawData);

data.forEach( word ->System.out.println(word) );
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Stream
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java.util.stream.Stream

Sequence of values

Operations on the values

Operations are chained together into pipelines

Tuesday, February 18, 14

http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html
http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html


Example
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  String[] words = {"a", "ab", "abc", "abcd", "bat"};
  List<String> wordList = Arrays.asList(words);
  List<String> longWords

 longWords = wordList.stream()
        .filter( s -> s.length() > 
2)
        .filter( s -> s.charAt(0) 
== 'a')
        .map( s -> 
s.toUpperCase())
        
.collect(Collectors.toList());
  System.out.println(longWords);
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Lazy Evaluation
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  String[] words = {"a", "ab", "abc", "abcd", "bat"};
  List<String> wordList = Arrays.asList(words);
  List<String> longWords

 longWords = wordList.stream()
        .filter( s -> s.length() > 
2)
        .filter( s -> s.charAt(0) 
== 'a')
        .map( s -> 
s.toUpperCase())
        
.collect(Collectors.toList());
  System.out.println(longWords);

Only One pass of List
to do all operations

Tuesday, February 18, 14



ing Words
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List<String> ingWords = heap.stream()
           .filter( s -> 
s.endsWith("ing"))

             
.collect(Collectors.toList());
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For More Information
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http://cr.openjdk.java.net/~briangoetz/lambda/lambda-libraries-final.html

State of the Lambda: Libraries Edition

http://tinyurl.com/mshjfkj

State of the Lambda

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

http://tinyurl.com/kg5m9zu
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Null Object
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Null Object
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Client AbstractObject

request()

RealObject

request()

NullObject

request() do nothing

NullObject implements all the operations of the real object, 

These operations do nothing or the correct thing for nothing
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Null Object & Binary Search Tree
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Node

BinaryNode NullNode

Null

Node

10

5

8

20

Null

Node

Null

Node

Null

Node

Null

Node
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Comparing Normal Tree vs Tree with Null Nodes
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Normal BST
public class BinaryNode {
 Node left
 Node right;
 int key;
 
 public boolean includes( int value ) {
  if (key == value)
   return true;
  else if ((value < key) & left == null) )
   return false;
  else if (value < key)
   return left.includes( value );
  else if (right == null)
   return false;
  else
   return right.includes(value);
 }
etc.
}

With Null Nodes
public class BinaryNode extends Node {
 Node left = new NullNode();
 Node right = new NullNode();
 int key;
 
 public boolean includes( int value ) {
  if (key == value)
   return true;
  else if (value < key )
   return left.includes( value );
  else
   return right.includes(value);
 }
etc.
}
 
public class NullNode extends Node {
 public boolean includes( int value ) {
  return false;
 }
etc.
}
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Applicability - When to use Null Objects
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Some collaborator instances should do nothing

You want clients to ignore the difference between a collaborator that does 
something and one that does nothing 

Client does not have to explicitly check for null or some other special value

You want to be able to reuse the do-nothing behavior so that various clients 
that need this behavior will consistently work in the same way

Tuesday, February 18, 14



Applicability -When not to use Null Objects
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Very little code actually uses the variable directly

The code that does use the variable is well encapsulated 

The code that uses the variable can easily decide how to handle the 
null case and will always handle it the same way 
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Consequences
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Advantages

Uses polymorphic classes

Simplifies client code

Encapsulates do nothing behavior

Makes do nothing behavior reusable

Disadvantages

Forces encapsulation

 Makes it difficult to distribute or mix into 
the 
 behavior of several collaborating objects 

May cause class explosion

Forces uniformity

Is non-mutable
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Implementation
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Too Many classes

Multiple Do-nothing meanings

 Try Adapter pattern

Transformation to RealObject

 Try Proxy pattern
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Refactoring: Introduce Null Object

27

You have repeated checks for a null value

Replace the null value with a null object

if (customer == null) 
plan = BillingPlan.basic();

else
plan = customer.getPlan();

plan = customer.getPlan();

Tuesday, February 18, 14



Create Null Subclass
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public boolean isNull() { return false;}
public static Customer newNull() { return new NullCustomer();}

boolean isNull() { return true;}

isNull()

static newNull()

Customer

isNull()

Null Customer

Compile

Tuesday, February 18, 14



Replace all nulls with null object
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class SomeClassThatReturnCustomers {

public Customer getCustomer() {
if (_customer == null ) 

return Customer.newNull();
else

return _customer;
}
etc.

}

Compile
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Replace all null checks with isNull()
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if (customer == null) 
plan = BillingPlan.basic();

else
plan = customer.getPlan();

if (customer.isNull()) 
plan = BillingPlan.basic();

else
plan = customer.getPlan();

Compile and test
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Find an operation clients invoke if not null
Add Operation to Null class
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if (customer.isNull()) 
plan = BillingPlan.basic();

else
plan = customer.getPlan();

isNull()

static newNull()

getPlan()

Customer

isNull()

getPlan()

Null Customer

class NullCustomer {
public BillingPlan getPlan() { 

return BillingPlan.basic();
}
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Remove the Condition Check
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if (customer.isNull()) 
plan = BillingPlan.basic();

else
plan = customer.getPlan();

plan = customer.getPlan();

Compile & Test
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Repeat last two slides for each operation 
clients check if null 
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Special Case
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Special Case

Represent special cases by a subclass

Use when multiple places that have same behavior

After conditional check for particular class instance

Or same behavior after a null check
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Object-Oriented Recursion 

Tuesday, February 18, 14

Source: 



A method polymorphically sends its message to a different receiver

Eventually a method is called that performs the task

The recursion then unwinds back to the original message send

37
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class HeadNode {
 public String toString() {
  return "(" + next.toString();
 }
}

class Node {
 public String toString() {
  return " " + element + next.toString();
 }
}

class TailNode {
 public String toString() {
  return " )";
 }
}

( 3 7 )

Head

Node

Node

3

Node

7

Tail

Node
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Without tail recursion doing this on a long linked list could cause a stack overflow. So while it may not be a good idea to do this 
on a linked list it does provide a simple example to explain the idea.



class HeadNode {
 public void add(int value) {
  next.add(value);
 }
}

class Node {
 public void add(int value) {
  if (element > value)
   prependNode(value);
  else
   next.add(value);
 }
}

class TailNode {
 public void add(int value) {
  prependNode(value);
 }
}

Head

Node

Node

3

Node

7

Tail

Node
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Principles of OO Design, or Everything I Know 
About Programming, I Learned from Dilbert

Alan Knight
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1. Never do any work that you can get someone 
else to do for you
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Example 1 Total of bills that have been paid this quarter for a factory

   total = aFactory.totalBillingsPaidSince(startDate).

versus

   total = 0;
   Vector billings = aFactory.billings();
    for (Bill billing : billings)
       if ((billing.status() == "paid") && (billing.date() > startDate))
           total = total + billing.amount();
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1. Never do any work that you can get someone 
else to do for you
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Excuse me Smithers. I need to know the total bills that have been paid so far this 
quarter. No, don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll 
go through  the records myself. I’m not that familiar with your filing system, but how 
complicated can it be? I’ll try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the 
quarter. No, I’m not interested in the petty details of your filing system. I want that 
total, and I’ll expect it on my desk within the next half millisecond.

Verses
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1. Never do any work that you can get someone 
else to do for you
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somebody.clients().add( new Client());

somebody.addClient( new Client());

verses

Less work

somebody just returns collection 

Needs 

addClient:
removeClient:
more?
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Encapsulation & Responsibility
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Encapsulation is about responsibility 

Who does the work

Who should do the work
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2. Avoid Responsibility
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If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.
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