
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2014

Doc 7
Feb 18, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Tuesday, February 18, 14

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

“Null Object”, Woolf, in Pattern Languages of Program Design 3, Edited by Martin, Riehle,
Buschmmann, Addison-Wesley, 1998, pp. 5-18

Special Case, Martin Fowler, http://martinfowler.com/eaaCatalog/specialCase.html

Patterns of Enterprise Application Architecture, Martin Fowler, Addision Wesley, 2003, pp. 496-498
Special Case

Principles of OO Design, or Everything I Know About Programming, I Learned from Dilbert, http://
alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html

Tuesday, February 18, 14

3

Java 8

Tuesday, February 18, 14

Java 8

4

Target Release Date: March 18, 2014

New Features
New Time, Date & Calendar classes
Improvements to Cryptographic classes
Nashorn JavaScript Engine
Concurrency Improvements

Accumulators, Adders
Default Methods
Functional language Features

Lambda Expressions
Collection Streams (internal iterators)

Tuesday, February 18, 14

Lambda Expression

5

Anonymous Function

(Integer a, Integer b) -> a + b

arguments body

(Integer start, Integer stop) -> {
for (int k = start; k < stop; k++)

System.out.println(k);
}

Tuesday, February 18, 14

Short Version of Lambda Syntax

6

(Integer a, Integer b) -> a + b(String text) -> text.length();

(a, b) -> a + btext -> text.length();

Tuesday, February 18, 14

Using Lambdas

7

Function<String,Integer> length = text -> text.length();
int nameLength = length.apply("Roger Whitney");

BiFunction<Integer,Integer,Integer> adder = (a, b) -> a + b;
int sum = adder.apply(1, 2);

Tuesday, February 18, 14

Other Types of Lamdas

8

 Predicate<Integer> isLarge = value -> value > 100;
 if (isLarge.test(59))
 System.out.println("large");

 Consumer<String> print = text -> System.out.println(text);
 print.accept("hello World");

 int size = xxx;
 Supplier<List> listType = size > 100 ? (()-> new ArrayList()): (() -> new Vector());
 List elements = listType.get();
 System.out.println(elements.getClass().getName());

Tuesday, February 18, 14

Lambda Types

9

Predicate<T> -- a boolean-valued property of an object
Consumer<T> -- an action to be performed on an object
Function<T,R> -- a function transforming a T to a R
Supplier<T> -- provide an instance of a T (such as a factory)
UnaryOperator<T> -- a function from T to T
BinaryOperator<T> -- a function from (T, T) to T

New - See java.util.function Interfaces

java.lang.Runnable
java.util.concurrent.Callable
java.security.PrivilegedAction
java.util.Comparator
java.io.FileFilter
java.beans.PropertyChangeListener
etc.

Pre-existing

Tuesday, February 18, 14

http://download.oracle.com/javase/7/docs/api/java/lang/Runnable.html
http://download.oracle.com/javase/7/docs/api/java/lang/Runnable.html
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/Callable.html
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/Callable.html
http://download.oracle.com/javase/7/docs/api/java/security/PrivilegedAction.html
http://download.oracle.com/javase/7/docs/api/java/security/PrivilegedAction.html
http://download.oracle.com/javase/7/docs/api/java/util/Comparator.html
http://download.oracle.com/javase/7/docs/api/java/util/Comparator.html
http://download.oracle.com/javase/7/docs/api/java/io/FileFilter.html
http://download.oracle.com/javase/7/docs/api/java/io/FileFilter.html
http://www.fxfrog.com/docs_www/api/java/beans/PropertyChangeListener.html
http://www.fxfrog.com/docs_www/api/java/beans/PropertyChangeListener.html

Functional Interfaces

10

Interface with one method

Can be used to hold a lambda

java.lang.Runnable

void run()

Tuesday, February 18, 14

Runnnable Example

11

Runnable test = () -> System.out.println("hello from thread");
Thread example = new Thread(test);
example.start();

Tuesday, February 18, 14

OnClickListener Example

12

button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View source) {
 makeToast();
 }
});

button.setOnClickListener(() -> makeToast());

Tuesday, February 18, 14

Internal Iterator - forEach

13

String[] rawData = {"cat", "can", "bat", "rat"};

List<String> data = Arrays.asList(rawData);

data.forEach(word ->System.out.println(word));

Tuesday, February 18, 14

Stream

14

java.util.stream.Stream

Sequence of values

Operations on the values

Operations are chained together into pipelines

Tuesday, February 18, 14

http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html
http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html

Example

15

 String[] words = {"a", "ab", "abc", "abcd", "bat"};
 List<String> wordList = Arrays.asList(words);
 List<String> longWords

 longWords = wordList.stream()
 .filter(s -> s.length() >
2)
 .filter(s -> s.charAt(0)
== 'a')
 .map(s ->
s.toUpperCase())

.collect(Collectors.toList());
 System.out.println(longWords);

Tuesday, February 18, 14

Lazy Evaluation

16

 String[] words = {"a", "ab", "abc", "abcd", "bat"};
 List<String> wordList = Arrays.asList(words);
 List<String> longWords

 longWords = wordList.stream()
 .filter(s -> s.length() >
2)
 .filter(s -> s.charAt(0)
== 'a')
 .map(s ->
s.toUpperCase())

.collect(Collectors.toList());
 System.out.println(longWords);

Only One pass of List
to do all operations

Tuesday, February 18, 14

ing Words

17

List<String> ingWords = heap.stream()
 .filter(s ->
s.endsWith("ing"))

.collect(Collectors.toList());

Tuesday, February 18, 14

For More Information

18

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-libraries-final.html

State of the Lambda: Libraries Edition

http://tinyurl.com/mshjfkj

State of the Lambda

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

http://tinyurl.com/kg5m9zu

Tuesday, February 18, 14

19

Null Object

Tuesday, February 18, 14

Null Object

20

Client AbstractObject

request()

RealObject

request()

NullObject

request() do nothing

NullObject implements all the operations of the real object,

These operations do nothing or the correct thing for nothing

Tuesday, February 18, 14

Null Object & Binary Search Tree

21

Node

BinaryNode NullNode

Null

Node

10

5

8

20

Null

Node

Null

Node

Null

Node

Null

Node

Tuesday, February 18, 14

Comparing Normal Tree vs Tree with Null Nodes

22

Normal BST
public class BinaryNode {
 Node left
 Node right;
 int key;

 public boolean includes(int value) {
 if (key == value)
 return true;
 else if ((value < key) & left == null))
 return false;
 else if (value < key)
 return left.includes(value);
 else if (right == null)
 return false;
 else
 return right.includes(value);
 }
etc.
}

With Null Nodes
public class BinaryNode extends Node {
 Node left = new NullNode();
 Node right = new NullNode();
 int key;

 public boolean includes(int value) {
 if (key == value)
 return true;
 else if (value < key)
 return left.includes(value);
 else
 return right.includes(value);
 }
etc.
}

public class NullNode extends Node {
 public boolean includes(int value) {
 return false;
 }
etc.
}

Tuesday, February 18, 14

Applicability - When to use Null Objects

23

Some collaborator instances should do nothing

You want clients to ignore the difference between a collaborator that does
something and one that does nothing

Client does not have to explicitly check for null or some other special value

You want to be able to reuse the do-nothing behavior so that various clients
that need this behavior will consistently work in the same way

Tuesday, February 18, 14

Applicability -When not to use Null Objects

24

Very little code actually uses the variable directly

The code that does use the variable is well encapsulated

The code that uses the variable can easily decide how to handle the
null case and will always handle it the same way

Tuesday, February 18, 14

Consequences

25

Advantages

Uses polymorphic classes

Simplifies client code

Encapsulates do nothing behavior

Makes do nothing behavior reusable

Disadvantages

Forces encapsulation

 Makes it difficult to distribute or mix into
the
 behavior of several collaborating objects

May cause class explosion

Forces uniformity

Is non-mutable

Tuesday, February 18, 14

Implementation

26

Too Many classes

Multiple Do-nothing meanings

 Try Adapter pattern

Transformation to RealObject

 Try Proxy pattern

Tuesday, February 18, 14

Refactoring: Introduce Null Object

27

You have repeated checks for a null value

Replace the null value with a null object

if (customer == null)
plan = BillingPlan.basic();

else
plan = customer.getPlan();

plan = customer.getPlan();

Tuesday, February 18, 14

Create Null Subclass

28

public boolean isNull() { return false;}
public static Customer newNull() { return new NullCustomer();}

boolean isNull() { return true;}

isNull()

static newNull()

Customer

isNull()

Null Customer

Compile

Tuesday, February 18, 14

Replace all nulls with null object

29

class SomeClassThatReturnCustomers {

public Customer getCustomer() {
if (_customer == null)

return Customer.newNull();
else

return _customer;
}
etc.

}

Compile

Tuesday, February 18, 14

Replace all null checks with isNull()

30

if (customer == null)
plan = BillingPlan.basic();

else
plan = customer.getPlan();

if (customer.isNull())
plan = BillingPlan.basic();

else
plan = customer.getPlan();

Compile and test

Tuesday, February 18, 14

What is the point of this step?

Find an operation clients invoke if not null
Add Operation to Null class

31

if (customer.isNull())
plan = BillingPlan.basic();

else
plan = customer.getPlan();

isNull()

static newNull()

getPlan()

Customer

isNull()

getPlan()

Null Customer

class NullCustomer {
public BillingPlan getPlan() {

return BillingPlan.basic();
}

Tuesday, February 18, 14

Remove the Condition Check

32

if (customer.isNull())
plan = BillingPlan.basic();

else
plan = customer.getPlan();

plan = customer.getPlan();

Compile & Test

Tuesday, February 18, 14

33

Repeat last two slides for each operation
clients check if null

Tuesday, February 18, 14

34

Special Case

Tuesday, February 18, 14

35

Special Case

Represent special cases by a subclass

Use when multiple places that have same behavior

After conditional check for particular class instance

Or same behavior after a null check

Tuesday, February 18, 14

36

Object-Oriented Recursion

Tuesday, February 18, 14

Source:

A method polymorphically sends its message to a different receiver

Eventually a method is called that performs the task

The recursion then unwinds back to the original message send

37

Tuesday, February 18, 14

class HeadNode {
 public String toString() {
 return "(" + next.toString();
 }
}

class Node {
 public String toString() {
 return " " + element + next.toString();
 }
}

class TailNode {
 public String toString() {
 return ")";
 }
}

(3 7)

Head

Node

Node

3

Node

7

Tail

Node

38

Tuesday, February 18, 14

Without tail recursion doing this on a long linked list could cause a stack overflow. So while it may not be a good idea to do this
on a linked list it does provide a simple example to explain the idea.

class HeadNode {
 public void add(int value) {
 next.add(value);
 }
}

class Node {
 public void add(int value) {
 if (element > value)
 prependNode(value);
 else
 next.add(value);
 }
}

class TailNode {
 public void add(int value) {
 prependNode(value);
 }
}

Head

Node

Node

3

Node

7

Tail

Node

39

Tuesday, February 18, 14

40

Principles of OO Design, or Everything I Know
About Programming, I Learned from Dilbert

Alan Knight

Tuesday, February 18, 14

http://alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html

1. Never do any work that you can get someone
else to do for you

41

Example 1 Total of bills that have been paid this quarter for a factory

 total = aFactory.totalBillingsPaidSince(startDate).

versus

 total = 0;
 Vector billings = aFactory.billings();
 for (Bill billing : billings)
 if ((billing.status() == "paid") && (billing.date() > startDate))
 total = total + billing.amount();

Tuesday, February 18, 14

1. Never do any work that you can get someone
else to do for you

42

Excuse me Smithers. I need to know the total bills that have been paid so far this
quarter. No, don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll
go through the records myself. I’m not that familiar with your filing system, but how
complicated can it be? I’ll try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the
quarter. No, I’m not interested in the petty details of your filing system. I want that
total, and I’ll expect it on my desk within the next half millisecond.

Verses

Tuesday, February 18, 14

1. Never do any work that you can get someone
else to do for you

43

somebody.clients().add(new Client());

somebody.addClient(new Client());

verses

Less work

somebody just returns collection

Needs

addClient:
removeClient:
more?

Tuesday, February 18, 14

Encapsulation & Responsibility

44

Encapsulation is about responsibility

Who does the work

Who should do the work

Tuesday, February 18, 14

2. Avoid Responsibility

45

If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.

Tuesday, February 18, 14

