
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2014

Doc 8 Dilbert, Strategy, Decorator, Pipes
Feb 20, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, February 20, 14

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Principles of OO Design, or Everything I Know
About Programming, I Learned from Dilbert

Alan Knight

Thursday, February 20, 14

3

Thursday, February 20, 14

1. Never do any work that you can get someone
else to do for you

4

Example 1 Total of bills that have been paid this quarter for a factory

 total = aFactory.totalBillingsPaidSince(startDate).

versus

 total = 0;
 Vector billings = aFactory.billings();
 for (Bill billing : billings)
 if ((billing.status() == "paid") && (billing.date() > startDate))
 total = total + billing.amount();

Thursday, February 20, 14

1. Never do any work that you can get someone
else to do for you

5

Excuse me Smithers. I need to know the total bills that have been paid so far this
quarter. No, don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll
go through the records myself. I’m not that familiar with your filing system, but how
complicated can it be? I’ll try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the
quarter. No, I’m not interested in the petty details of your filing system. I want that
total, and I’ll expect it on my desk within the next half millisecond.

Verses

Thursday, February 20, 14

1. Never do any work that you can get someone
else to do for you

6

somebody.clients().add(new Client());

somebody.addClient(new Client());

verses

Less work

somebody just returns collection

Needs

addClient:
removeClient:
more?

Thursday, February 20, 14

1. Never do any work that you can get someone
else to do for you

7

somebody.clients().add(new Client());

somebody.addClient(new Client());

verses

Information Leakage

All code using class needs to
know you have a collection of clients

Information hiding

Thursday, February 20, 14

Encapsulation & Responsibility

8

Encapsulation is about responsibility

Who does the work

Who should do the work

Thursday, February 20, 14

2. Avoid Responsibility

9

If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.

Thursday, February 20, 14

10

Strategy Pattern

Thursday, February 20, 14

Favor
Composition

over
Inheritance

11

Thursday, February 20, 14

12

Sorted
Reverse Sorted
Random

Orderable List

Thursday, February 20, 14

OrderableList

SortedList ReverseList RandomList

13

Thursday, February 20, 14

14

One size does not fit all

Thursday, February 20, 14

15

Order
Sorted
Reverse Sorted
Random

Threads
Synchronized
Unsynchronized

Mutability
Mutable
Non-mutable

Issue 1 - Orthogonal Features

Thursday, February 20, 14

16

OrderableList

SortedList ReverseList RandomList

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Thursday, February 20, 14

17

Issue 2 - Flexibility

Thursday, February 20, 14

18

OrderableList x = new OrderableList();
x.makeSorted();
x.add(foo);
x.add(bar):
x.makeRandom();

Change behavior at runtime

Thursday, February 20, 14

19

Configure objects behavior at runtime

Thursday, February 20, 14

20

Algorithm

Sorted Random ReverseSorted

class OrderableList {
 private Object[] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
 orderer = x;
 }

 public void add(Object element) {
 elements = ordered.add(elements,element);
 }

Strategy Pattern

Thursday, February 20, 14

Structure

21

contextInterface()

Context

algorithmInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

Thursday, February 20, 14

22

The algorithm is the operation

Context contains the data

How does this work?

Thursday, February 20, 14

23

Prime Directive
Data + Operations

Thursday, February 20, 14

24

How does Strategy Get the Data?

Pass needed data as parameters in strategy method

Give strategy object reference to context
Strategy extracts needed data from context

Thursday, February 20, 14

25

Example - Java Layout Manager

import java.awt.*;
class FlowExample extends Frame {

 public FlowExample(int width, int height) {
 setTitle("Flow Example");
 setSize(width, height);
 setLayout(new FlowLayout(FlowLayout.LEFT));

 for (int label = 1; label < 10; label++)
 add(new Button(String.valueOf(label)));
 show();
 }

 public static void main(String args[]) {
 new FlowExample(175, 100);
 new FlowExample(175, 100);
 }
}

Thursday, February 20, 14

Example - Smalltalk Sort blocks

26

| list |
list := #(1 6 2 3 9 5) asSortedCollection.
Transcript
 print: list;
 cr.
list sortBlock: [:x :y | x > y].
Transcript
 print: list;
 cr;
 flush.

Thursday, February 20, 14

Costs

27

Clients must be aware of different Strategies

Communication overhead between Strategy and Context

Increase number of objects

Thursday, February 20, 14

Benefits

28

Alternative to subclassing of Context

Eliminates conditional statements

Replace in Context code like:

 switch (flag) {
 case A: doA(); break;
 case B: doB(); break;
 case C: doC(); break;
 }

 With code like:

 strategy.do();

Gives a choice of implementations

Thursday, February 20, 14

Refactoring: Replace Conditional Logic with
Strategy

29

Conditional logic in a method controls which of
several variants of a calculation are executed

Create a Strategy for each variant and make the
method delegate the calculation to a Strategy instance

so

Thursday, February 20, 14

Replace Conditional Logic with Strategy

30

class Foo {
public void bar() {

switch (flag) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}
}

}

class Foo {
private strategy;
public void bar() {

strategy.do(data);
}

}

Thursday, February 20, 14

31

Decorator

Thursday, February 20, 14

Prime Directive
Data + Operations

32

Thursday, February 20, 14

Decorator Pattern

33

Thursday, February 20, 14

Adds responsibilities to individual objects

 Dynamically
 Transparently

34

Thursday, February 20, 14

import java.io.*;
import sdsu.io.*;
class ReadingFileExample
 {
 public static void main(String args[]) throws Exception
 {
 FileInputStream inputFile;
 BufferedInputStream bufferedFile;
 ASCIIInputStream cin;

 inputFile = new FileInputStream("ReadingFileExample.java");
 bufferedFile = new BufferedInputStream(inputFile);
 cin = new ASCIIInputStream(bufferedFile);

35

Thursday, February 20, 14

ConcreteDecoratorB

Component
operation()

Decorator

operation()
component

ConcreteComponent
operation()

ConcreteDecoratorA

36

Thursday, February 20, 14

37

Thursday, February 20, 14

aDecorator
component aComponent

aDecorator
component

Decorator forwards all component operations

38

Thursday, February 20, 14

39

Favor Composition over Inheritance

Thursday, February 20, 14

Refactoring: Move Embellishment to Decorator

40

Client aBinaryTree
toArray

Client aBinaryTree
toArray

anOddValueDecorator

toArray

Thursday, February 20, 14

Benefits & Liabilities

41

Simplifies a class
Distinguishes a classes core responsibilities from embellishments

Changes the object identity of a decorated object
Code harder to understand and debug
Combinations of decorators may not work correctly together

Benefits

Liabilities

Thursday, February 20, 14

42

Pipes and Filters

Thursday, February 20, 14

Pipes & Filters

43

ls | grep -i b | wc -l

Context
Processing data streams

Problem
Building a system that processes or transforms a stream of data

Forces
Small processing steps are easier to reuse than large components

Non-adjacent processing steps do not share information

System changes should be possible by exchanging or recombining processing steps, even by users

Final results should be presented or stored in different ways

Thursday, February 20, 14

Solution

44

Divide task into multiple sequential processing steps or filter components

Output of one filter is the input of the next filter

Filters process data incrementally

Filter does not wait to get all the data before processing

Thursday, February 20, 14

Solution Continued

45

Data source – input to the system

Data sink – output of the system

Pipes - connect the data source, filters and data sink

Pipe implements the data flow between adjacent processes steps

Processing pipeline – sequence of filters and pipes

Pipeline can process batches of data

Data
Source Pipe Filter Data

Sink
FilterPipe Pipe

Thursday, February 20, 14

Python Interpreter

46

http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential

Thursday, February 20, 14

http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential
http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential

Intercepting Filter - Problem

47

Preprocessing and post-processing of a client Web request and
response

A Web request often must pass several tests prior to the main
processing
 Has the client been authenticated?
 Does the client have a valid session?
 Is the client's IP address from a trusted network?
 Does the request path violate any constraints?
 What encoding does the client use to send the data?
 Do we support the browser type of the client?

Nested if statements lead to fragile code

Thursday, February 20, 14

Intercepting Filter - Forces

48

Common processing, such as checking the data-encoding scheme or logging
information about each request, completes per request.

Centralization of common logic is desired.

Services should be easy to add or remove unobtrusively without affecting
existing components, so that they can be used in a variety of combinations,
such as

Logging and authentication

Debugging and transformation of output for a specific client

Uncompressing and converting encoding scheme of input

Thursday, February 20, 14

