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Principles of OO Design, or Everything I Know 
About Programming, I Learned from Dilbert

Alan Knight
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1. Never do any work that you can get someone 
else to do for you

4

Example 1 Total of bills that have been paid this quarter for a factory

   total = aFactory.totalBillingsPaidSince(startDate).

versus

   total = 0;
   Vector billings = aFactory.billings();
    for (Bill billing : billings)
       if ((billing.status() == "paid") && (billing.date() > startDate))
           total = total + billing.amount();
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1. Never do any work that you can get someone 
else to do for you
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Excuse me Smithers. I need to know the total bills that have been paid so far this 
quarter. No, don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll 
go through  the records myself. I’m not that familiar with your filing system, but how 
complicated can it be? I’ll try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the 
quarter. No, I’m not interested in the petty details of your filing system. I want that 
total, and I’ll expect it on my desk within the next half millisecond.

Verses

Thursday, February 20, 14



1. Never do any work that you can get someone 
else to do for you
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somebody.clients().add( new Client());

somebody.addClient( new Client());

verses

Less work

somebody just returns collection 

Needs 

addClient:
removeClient:
more?
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1. Never do any work that you can get someone 
else to do for you
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somebody.clients().add( new Client());

somebody.addClient( new Client());

verses

Information Leakage

All code using class needs to
know you have a collection of clients 

Information hiding
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Encapsulation & Responsibility
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Encapsulation is about responsibility 

Who does the work

Who should do the work
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2. Avoid Responsibility
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If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.
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Strategy Pattern
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Favor
Composition

over
Inheritance
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Sorted
Reverse Sorted
Random

Orderable List
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OrderableList

SortedList ReverseList RandomList

13
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One size does not fit all
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Order
Sorted
Reverse Sorted
Random

Threads
Synchronized
Unsynchronized

Mutability
Mutable
Non-mutable

Issue 1 - Orthogonal Features
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OrderableList

SortedList ReverseList RandomList

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch
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Issue 2 - Flexibility
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OrderableList x = new OrderableList();
x.makeSorted();
x.add(foo);
x.add(bar):
x.makeRandom(); 

Change behavior at runtime
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Configure objects behavior at runtime
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Algorithm

Sorted Random ReverseSorted

class OrderableList {
 private Object[ ] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
  orderer = x;
 }

   public void add(Object element) {
      elements = ordered.add(elements,element);
   }

Strategy Pattern
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Structure
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contextInterface()

Context

algorithmInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

Thursday, February 20, 14



22

The algorithm is the operation

Context contains the data

How does this work?
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Prime Directive
Data + Operations
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How does Strategy Get the Data?

Pass needed data as parameters in strategy method

Give strategy object reference to context
Strategy extracts needed data from context 
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Example - Java Layout Manager

import java.awt.*;
class  FlowExample  extends Frame  {
   
 public FlowExample( int  width, int height ) {
  setTitle( "Flow Example" );
  setSize( width, height );
  setLayout( new FlowLayout( FlowLayout.LEFT) );
      
  for ( int label = 1; label < 10; label++ )
   add( new Button( String.valueOf( label ) ) );
  show();
 }
 
 public  static  void  main( String  args[] ) {
  new  FlowExample( 175, 100 );
  new  FlowExample( 175, 100 );
 }
}
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Example - Smalltalk Sort blocks
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| list |
list := #( 1 6 2 3 9 5 ) asSortedCollection.
Transcript 
 print: list;
 cr.
list sortBlock: [:x :y | x > y].
Transcript 
 print: list;
 cr;
 flush.
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Costs
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Clients must be aware of different Strategies

Communication overhead between Strategy and Context

Increase number of objects
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Benefits
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Alternative to subclassing of Context

Eliminates conditional statements

Replace in Context code like:

  switch  ( flag ) {
   case A: doA(); break;
   case B: doB(); break;
   case C: doC(); break;
  }

  With code like:

  strategy.do();

Gives a choice of implementations
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Refactoring: Replace Conditional Logic with
Strategy
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Conditional logic in a method controls which of 
several variants of a calculation are executed

Create a Strategy for each variant and make the 
method delegate the calculation to a Strategy instance

so

Thursday, February 20, 14



Replace Conditional Logic with Strategy
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class Foo {
public void bar() {

switch  ( flag ) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}
}

}

class Foo {
private strategy;
public void bar() {

strategy.do(data);
}

}
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Decorator
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Prime Directive
Data + Operations

32
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Decorator Pattern
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Adds responsibilities to individual objects

 Dynamically 
 Transparently 

34
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import java.io.*;
import sdsu.io.*;
class  ReadingFileExample
 {
 public  static  void  main( String  args[]  ) throws Exception
  {
  FileInputStream inputFile;
  BufferedInputStream bufferedFile;
  ASCIIInputStream  cin;
   
  inputFile = new FileInputStream( "ReadingFileExample.java" );
  bufferedFile = new BufferedInputStream( inputFile );
  cin = new ASCIIInputStream( bufferedFile );

35
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ConcreteDecoratorB

Component
operation()

Decorator

operation()
component

ConcreteComponent
operation()

ConcreteDecoratorA

36
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aDecorator
component aComponent

aDecorator
component

Decorator forwards all component operations

38
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Favor Composition over Inheritance
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Refactoring: Move Embellishment to Decorator
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Client aBinaryTree
toArray

Client aBinaryTree
toArray

anOddValueDecorator

toArray
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Benefits & Liabilities
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Simplifies a class
Distinguishes a classes core responsibilities from embellishments

Changes the object identity of a decorated object
Code harder to understand and debug
Combinations of decorators may not work correctly together 

Benefits

Liabilities
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Pipes and Filters
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Pipes & Filters

43

ls | grep -i b | wc -l

Context
Processing data streams

Problem
Building a system that processes or transforms a stream of data 

Forces
Small processing steps are easier to reuse than large components

Non-adjacent processing steps do not share information

System changes should be possible by exchanging or recombining processing steps, even by users

Final results should be presented or stored in different ways

Thursday, February 20, 14



Solution
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Divide task into multiple sequential processing steps or filter components

Output of one filter is the input of the next filter

Filters process data incrementally

Filter does not wait to get all the data before processing
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Solution Continued
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Data source – input to the system

Data sink – output of the system

Pipes  - connect the data source, filters and data sink

Pipe implements the data flow between adjacent processes steps

Processing pipeline – sequence of filters and pipes

Pipeline can process batches of data

Data
Source Pipe Filter Data

Sink
FilterPipe Pipe
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Python Interpreter

46

http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential
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Intercepting Filter - Problem
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Preprocessing and post-processing of a client Web request and 
response

A Web request often must pass several tests prior to the main 
processing
 Has the client been authenticated?
 Does the client have a valid session?
 Is the client's IP address from a trusted network?
 Does the request path violate any constraints?
 What encoding does the client use to send the data?
 Do we support the browser type of the client?

Nested if statements lead to fragile code
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Intercepting Filter - Forces
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Common processing, such as checking the data-encoding scheme or logging 
information about each request, completes per request.

Centralization of common logic is desired.

Services should be easy to add or remove unobtrusively without affecting 
existing components, so that they can be used in a variety of combinations, 
such as

Logging and authentication

Debugging and transformation of output for a specific client

Uncompressing and converting encoding scheme of input
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