
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2013

Doc 9 Pattern Intro, Observer
Feb 25, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Tuesday, February 25, 14

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

A Pattern Language, Christopher Alexander, 1977

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of
Program Design 2, Addison Wesley, 1996

Smalltalk Best Practice Patterns, Kent Beck, 1997

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm,
Johnson, Vlissides, 1995

Tuesday, February 25, 14

Pattern Beginnings

3

"Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice"

"Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution"

A Pattern Language, Christopher Alexander, 1977

Tuesday, February 25, 14

A Place To Wait

4

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time hanging around doing nothing

Cannot enjoy the time since you do not know when you must leave

Classic "waiting room"
Dreary little room
People staring at each other
Reading a few old magazines
Offers no solution

Fundamental problem
How to spend time "wholeheartedly" and
Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
 Playground beside Pediatrics Clinic
 Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
 A window seat that looks down on a street
 A protected seat in a garden
 A dark place and a glass of beer
 A private seat by a fish tank

Tuesday, February 25, 14

A Place To Wait

5

Therefore:

"In places where people end up waiting create a situation which makes the
waiting positive. Fuse the waiting with some other activity - newspaper, coffee,
pool tables, horseshoes; something which draws people in who are not simple
waiting. And also the opposite: make a place which can draw a person waiting
into a reverie; quiet; a positive silence"

Tuesday, February 25, 14

Chicken And Egg

6

Problem

Two concepts are each a prerequisite of the other
To understand A one must understand B
To understand B one must understand A
A "chicken and egg" situation

Constraints and Forces

First explain A then B
 Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain the other one
 People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail in each iteration

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of
Program Design 2, Addison Wesley, 1996

Tuesday, February 25, 14

Design Principle 1

7

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define common interfaces for a set of classes

Declare variables to be instances of the abstract class not instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of objects they use, as long as the objects adhere to
the interface the client expects

Client classes/objects remain unaware of the classes that implement these objects.
Clients only know about the abstract classes (or interfaces) that define the interface.

Tuesday, February 25, 14

Programming to an Interface

8

Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add(aStudent);

students can be any collection type

We can change our mind on what type to use

Tuesday, February 25, 14

Interface & Duck Typing

9

In dynamically typed languages programming to an interface is the norm

Dynamically typed languages tend to lack a way to declare an interface

Tuesday, February 25, 14

Design Principle 2

10

Favor object composition over class inheritance

Composition
 Allows behavior changes at run time
 Helps keep classes encapsulated and focused on one task
 Reduce implementation dependencies

Inheritance
class A {
 Foo x
 public int complexOperation() {
 blah }
}

class B extends A {
 public void bar() { blah}
}

Composition
class B {
 A myA;
 public int complexOperation() {
 return myA.complexOperation()
 }

 public void bar() { blah}
}

Tuesday, February 25, 14

Designing for Change

11

Creating an object by specifying a class explicitly
 Abstract factory, Factory Method, Prototype

Dependence on hardware and software platforms
 Abstract factory, Bridge

Dependence on object representations or implementations
 Abstract factory, Bridge, Memento, Proxy

Algorithmic dependencies
 Builder, Iterator, Strategy, Template Method, Visitor

Tight Coupling
 Abstract factory, Bridge, Chain of Responsibility,
 Command, Facade, Mediator, Observer

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Dependence on specific operations
 Chain of Responsibility, Command

Inability to alter classes conveniently
 Adapter, Decorator, Visitor

Tuesday, February 25, 14

Kent Beck's Rules for Good Style

12

One and only once

In a program written in good style, everything is said once and only once

Methods with the same logic
Objects with same methods
Systems with similar objects

 rule is not satisfied

Tuesday, February 25, 14

Lots of little Pieces

13

"Good code invariably has small methods and small objects"

Small pieces are needed to satisfy "once and only once"

Make sure you communicate the big picture or you get a mess

Tuesday, February 25, 14

Rates of change

14

Don't put two rates of change together

An object should not have a field that changes every second & a field that
change once a month

A collection should not have some elements that are added/removed every
second and some that are add/removed once a month

An object should not have code that has to change for each piece of
hardware and code that has to change for each operating system

Tuesday, February 25, 14

Replacing Objects

15

Good style leads to easily replaceable objects

"When you can extend a system solely by adding new objects without
modifying any existing objects, then you have a system that is flexible and
cheap to maintain"

Tuesday, February 25, 14

Moving Objects

16

"Another property of systems with good style is that their objects can be
easily moved to new contexts"

Tuesday, February 25, 14

17

Observer

Tuesday, February 25, 14

Observer

18

One-to-many dependency between objects

When one object changes state,
 all its dependents are notified and updated
automatically

Tuesday, February 25, 14

Structure

19

observers

subject

Subject
Attach(Observer)
Detach(Observer)
Notify()

Observer
Update()

ConcreteSubject
GetState()

subjectState

ConcreteObserver
Update()

observerState

subject

observer Bobserver A

GetState()Update()

SetState()

Update()

subject observer A observer B
Notify()

Update()

GetState()
Update()

GetState()

SetState()

Tuesday, February 25, 14

Common Java Example - Listeners

20

Java Interface

View.OnClickListener

abstract void onClick(View v)
Called when a view has been clicked.

Tuesday, February 25, 14

http://developer.android.com/reference/android/view/View.OnClickListener.html#onClick(android.view.View)
http://developer.android.com/reference/android/view/View.OnClickListener.html#onClick(android.view.View)
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html

Java Example

21

public class CreateUIInCodeActivity extends Activity implements View.OnClickListener{
 Button test;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 test = (Button) this.findViewById(R.id.test);
 test.setOnClickListener(this);
 }

 public void onClick(View source) {
 Toast.makeText(this, "Hello World", Toast.LENGTH_SHORT).show();
 }
}

Tuesday, February 25, 14

Pseudo Java Example

22

public class Subject {
 Window display;
 public void someMethod() {
 this.modifyMyStateSomeHow();
 display.addText(this.text());
 }
}

public class Subject {
 ArrayList observers = new ArrayList();

 public void someMethod() {
 this.modifyMyStateSomeHow();
 changed();
 }

 private void changed() {
 Iterator needsUpdate = observers.iterator();
 while (needsUpdate.hasNext())
 needsUpdate.next().update(this);
 }
}

public class SampleWindow {
 public void update(Object subject) {
 text = ((Subject) subject).getText();
 Thread.sleep(10000).
 }
}

Abstract coupling - Subject & Observer

Broadcast communication

Updates can take too long

Tuesday, February 25, 14

Some Language Support

23

Smalltalk Implementation
Object implements methods for both Observer and Subject.

Actual Subjects should subclass Model

Smalltalk Java Ruby Observer Pattern

Object Observer Abstract Observer class

Object & Model Observable Observable Subject class

Tuesday, February 25, 14

Java's Observer

24

Class java.util.Observable

void addObserver(Observer o)
void clearChanged()
int countObservers()
void deleteObserver(Observer o)
void deleteObservers()
boolean hasChanged()
void notifyObservers()
void notifyObservers(Object arg)
void setChanged()

Observable object may have any number of Observers

Whenever the Observable instance changes,
it notifies all of its observers

Notification is done by calling the update() method on all observers.

Interface java.util.Observer

Allows all classes to be observable by instances of class Observer

Java Observer Pattern

Interface Observer Abstract Observer class

Observable class Subject class

Tuesday, February 25, 14

Java Example

25

class Counter extends Observable {
 public static final String INCREASE = "increase";
 public static final String DECREASE = "decrease";
 private int count = 0;
 private String label;

 public Counter(String label) { this.label = label; }

 public String label() { return label; }
 public int value() { return count; }
 public String toString() { return String.valueOf(count);}

 public void increase() {
 count++;
 setChanged();
 notifyObservers(INCREASE);
 }

 public void decrease() {
 count--;
 setChanged();
 notifyObservers(DECREASE);
 }
 }

Tuesday, February 25, 14

Java Observer

26

class IncreaseDetector implements Observer {
 public void update(java.util.Observable whatChanged,
 java.lang.Object message) {
 if (message.equals(Counter.INCREASE)) {
 Counter increased = (Counter) whatChanged;
 System.out.println(increased.label() + " changed to " +
 increased.value());
 }
 }

 public static void main(String[] args) {
 Counter test = new Counter();
 IncreaseDetector adding = new IncreaseDetector();
 test.addObserver(adding);
 test.increase();
}

Tuesday, February 25, 14

Ruby Example

27

require'observer'

class Counter
 include Observable

 attr_reader :count

 def initialize
 @count = 0
 end
 def increase
 @count += 1
 changed
 notify_observers(:INCREASE)
 end

 def decrease
 @count -= 1
 changed
 notify_observers(:DECREASE)
 end
end

class IncreaseDetector

 def update(type)
 if type == :INCREASE
 puts('Increase')
 end
 end
end

count = Counter.new()
puts count.count
count.add_observer(IncreaseDetector.new)
count.increase
count.increase
puts count.count

Tuesday, February 25, 14

28

Implementation Issues

Tuesday, February 25, 14

29

Mapping subjects(Observables) to observers
Use list in subject
Use hash table

public class Observable {
 private boolean changed = false;
 private Vector obs;

public Observable() {
 obs = new Vector();
 }

public synchronized void addObserver(Observer o) {
 if (!obs.contains(o)) {
 obs.addElement(o);
 }
 }

Tuesday, February 25, 14

Observing more than one subject

30

If an observer has more than one subject how does it know which one changed?

Pass information in the update method

Tuesday, February 25, 14

Deleting Subjects

31

In C++ the subject may no longer exist

Java/Smalltalk observer may prevent subject from garbage collection

Tuesday, February 25, 14

Who Triggers the update?

32

Have methods that change the state trigger update

 class Counter extends Observable { // some code removed
 public void increase() {
 count++;
 setChanged();
 notifyObservers(INCREASE);
 }
 }

Have clients call Notify at the right time

class Counter extends Observable { // some code removed
 public void increase() { count++; }
}

Counter pageHits = new Counter();
pageHits.increase();
pageHits.increase();
pageHits.increase();
pageHits.notifyObservers();

Tuesday, February 25, 14

Subject is self-consistent before Notification

33

class ComplexObservable extends Observable {
 Widget frontPart = new Widget();
 Gadget internalPart = new Gadget();

 public void trickyChange() {
 frontPart.widgetChange();
 internalpart.anotherChange();
 setChanged();
 notifyObservers();
 }
}

class MySubclass extends ComplexObservable {
 Gear backEnd = new Gear();

 public void trickyChange() {
 super.trickyChange();
 backEnd.yetAnotherChange();
 setChanged();
 notifyObservers();
 }
}

Tuesday, February 25, 14

Adding information about the change

34

push models - add parameters in the update method

class IncreaseDetector extends Counter implements Observer { // stuff not shown

 public void update(Observable whatChanged, Object message) {
 if (message.equals(INCREASE))
 increase();
 }
}

class Counter extends Observable { // some code removed
 public void increase() {
 count++;
 setChanged();
 notifyObservers(INCREASE);
 }
}

Tuesday, February 25, 14

Adding information about the change

35

pull model - observer asks Subject what happened

class IncreaseDetector extends Counter implements Observer {
 public void update(Observable whatChanged) {
 if (whatChanged.didYouIncrease())
 increase();
 }
}

class Counter extends Observable { // some code removed
 public void increase() {
 count++;
 setChanged();
 notifyObservers();
 }
}

Tuesday, February 25, 14

36

Scaling the Pattern

Tuesday, February 25, 14

Java Event Model

37

AWT/Swing components broadcast events to Listeners

JDK1.0 AWT components broadcast an event to all its listeners

A listener normally not interested all events

Broadcasting to all listeners was too slow with many listeners

Tuesday, February 25, 14

Java 1.1+ Event Model

38

Each component supports different types of events:

Component supports
ComponentEvent FocusEvent
KeyEvent MouseEvent

Each event type supports one or more listener types:

MouseEvent
MouseListener MouseMotionListener

Each listener interface replaces update with multiple methods

MouseListener
mouseClicked() mouseEntered()
mousePressed() mouseReleased()

Listeners
Only register for events of interest
Don't need case statements to determine what happened

Tuesday, February 25, 14

Small Models

39

Often an object has a number of fields(aspects) of interest to observers

Rather than make the object a subject make the individual fields subjects
Simplifies the main object
Observers can register for only the data they are interested in

VisualWorks ValueHolder

Subject for one value

ValueHolder allows you to:

Set/get the value
Setting the value notifies the observers of the change

Add/Remove dependents

Tuesday, February 25, 14

Reactive Programming

40

datatypes that represent a value 'over time' Spreadsheets
Elm
Meteor.js

Tuesday, February 25, 14

http://stackoverflow.com/questions/1028250/what-is-functional-reactive-programming
http://elm-lang.org/
http://en.wikipedia.org/wiki/Reactive_programming

