
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2014

Doc 19 Facade & Mediator
April 24, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, April 24, 14

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Facade

Thursday, April 24, 14

3

Thursday, April 24, 14

4

Size
Item

Source Lines of Code
(Millions)

F-22 Raptor US jet fighter 1.7

Boeing 787 6.5

S-class Mercedes-Benz
radio & navigation system 20

Mac OS 10.4 86

Premium class automobile ~100

Debian 4.0 283

Design Patterns text contains under 8,000 lines

Thursday, April 24, 14

Reference: This Car Runs on Code, http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
Source lInes of code, http://en.wikipedia.org/wiki/Source_lines_of_code

The Facade Pattern

5

Client

Facade

subsystem
classes

Client

???

Create a class that is the interface to the subsystem

Clients interface with the Facade class to deal with the subsystem

Thursday, April 24, 14

Consequences of Facade Pattern

6

It hides the implementation of the subsystem from clients

It promotes weak coupling between the subsystems and its clients

It does not prevent clients from using subsystem classes directly, should it?

Facade does not add new functionality to the subsystem

Thursday, April 24, 14

Public versus Private Subsystem classes

7

Some classes of a subsystem are
public

facade
private

Thursday, April 24, 14

Compiler Example

8

The VisualWorks Smalltalk compiler system has 75 classes

Programmers only use Compiler, which uses the other classes

Compiler evaluate: '100 factorial'

| method compiler |
method := 'reset
 "Resets the counter to zero"
 count := 0.'.

compiler := Compiler new.
compiler
 parse:method
 in: Counter
 notifying: nil

Thursday, April 24, 14

9

Mediator

Thursday, April 24, 14

10

Mediator
A mediator controls and coordinates the interactions of a group of objects

A

B

C

DE

A

B

C

DE

Mediator

Thursday, April 24, 14

11

Structure

Mediator

ConcreteMediator

Colleague

ConcreteColleague1 ConcreteColleague1

Thursday, April 24, 14

Participants

12

Mediator

Defines an interface for communicating with Colleague objects

ConcreteMediator

Implements cooperative behavior by coordinating Colleague objects

Knows and maintains its colleagues

Colleague classes

Each Colleague class knows its Mediator object

Each colleague communicates with its mediator whenever it
would have otherwise communicated with another colleague

Thursday, April 24, 14

Motivating Example - Dialog Boxes

13

aClient
director

aListBox
director

aButton
director

anEntryField
director

aFontDialogDirector

Thursday, April 24, 14

14

How does this differ from a God Class?

Thursday, April 24, 14

15

When to use the Mediator Pattern

When a set of objects communicate in a well-defined but
complex ways

When reusing an object is difficult because it refers to and
communicates with many other objects

When a behavior that's distributed between several classes
should be customizable without a lot of subclassing

Thursday, April 24, 14

Classic Mediator Example

16

Thursday, April 24, 14

Simpler Example

17

Thursday, April 24, 14

Non Mediator Solution

18

class OKButton extends Button {
TextField password;
TextField username;
Database userData;
Model application;

protected void processEvent(AWTEvent e) {
if (!e.isButtonPressed()) return;
e.consume();
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

Thursday, April 24, 14

http://java.sun.com/javase/6/docs/api/java/awt/AWTEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/AWTEvent.html

Mediator Solution

19

class LoginDialog extends Panel {
TextField password;
TextField username;
Database userData;
Button ok, cancel;

protected void actionPerformed(ActionEvent e) {
if (!e.isButtonPressed() or e.getSource() != ok) return;
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

Mediator

Thursday, April 24, 14

http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html#actionPerformed(java.awt.event.ActionEvent)
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html#actionPerformed(java.awt.event.ActionEvent)
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html

What is Different?

20

Non Mediator Example

Special Button class
OK button coupled to text fields

Mediator Example

No specialButton class
LoginDialog coupled to text fields

Logic moved from button class to LoginDialog

Thursday, April 24, 14

But

21

Java's event mechanism promotes mediator solution

Thursday, April 24, 14

