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Topics
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Class = data + operations
Abstraction
Information Hiding

Code Reuse
Modifiability
Safety
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public class LinkedList {

public void getKthElement(int k) {
blah
blah
System.out.println( blah );

void - not returning a value

getXXX - returning a value

Can not test using JUnit

Program can’t access elements of list

No use
No code reuse
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public class LinkedList {

public void displayProbationStudents() {
blah
blah
System.out.println( blah );
blah
System.out.println( blah );

Can not test using JUnit

Program can’t access elements of list

Can’t use in 

Web app
Desktop app
Mobile App
Batch processing
Server side computing
Enterprise computing
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public class LinkedList {

public ArrayList getProbationStudents() {
ArrayList<Students> probation = new ArrayList<Student>():
blah
blah
return probation;

}

Somewhere else

LinkedList students = blah;
blah
ArrayList<Student> probation = students.getProbationStudents();
System.out.println(probation);
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public class LinkedList {

public ArrayList getProbationStudents() {
ArrayList<Students> probation = new ArrayList<Student>():
blah
blah
return probation;

}

Can test using JUnit

Program can access elements of list

Can use in 

Web app
Desktop app
Mobile App
Batch processing
Server side computing
Enterprise computing
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Keep display code separate from computation

Makes computation resuable

Tuesday, February 10, 15



8

System.out.println

Part of view

Rarely use standard out for view

Use for debugging
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What Operations belong in LinkedList?
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add element

retrieve element

remove element

remove all elements

test if element is in list

find all students on probation

find all students with 4.0 GPA

iterate over all elements in list
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public class LinkedList {

public Iterator iterator() { blah }

Somewhere else

LinkedList students = blah;
blah
iterator allStudents = students.iterator();
ArrayList<Student> probation = new ArrayList<Student>()
while (allStudents.hasNext()) {

Student current = allStudents.next();
if (current.onProbation() )

probation.add(current);
}
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public class LinkedList {

public Iterator iterator() { blah }

Somewhere else

LinkedList students = blah;
blah
ArrayList<Student> probation = students.stream()

                        .filter(each -> each.onProbation())
                        .collect(Collector.toList());
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public class LinkedList {
private Node head;

public Node getKthElement(int k) {
Node current = head;
blah
blah
return current;

}

Violates information hiding

Not safe
Everyone has access to node
Can change linked list directly

Shotgun surgery
Change to node class can 
require change to all users of list

Clients have to
Know about Node 
Repeatedly pull data out of node
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public class LinkedList {
private Node head;

public Node getHead() {
return head;

}

public void add(Node element) {
blah

}

Violates information hiding
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class Node {
private Student data;
private Node next;
private Node previous;
etc,

}

class LinkedList {
private Node head;

Code Reuse

How often do we need list of students?
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class Node {
private Object data;
private Node next;
private Node previous;
etc,

}

class LinkedList {
private Node head;

Code Reuse

Now get list of objects

Used all the time
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class Node<E> {
private E data;
private Node next;
private Node previous;
etc,

}

class LinkedList<E> {
private Node<E> head;

Code Reuse

Now get list of objects

Used all the time

Now have type checking
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class Node {
private String name;
private String redId;
private float gpa;
private Node next;
private Node previous;
etc,

}

class LinkedList {
private Node head;

What is it?

Node?
Student?
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class LinkedList<E> {
private static Node<E> head;

public static void add(Object item) {
blah

}

LinkedList<Student> cs635 = new LinkedList<>();
LinkedList<Student> cs646 = new LinkedList<>();
cs635.add(joe);
cs646.add(pete);

Both list have both students

Really just one list
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public class OutOfBoundsException extends Exception {

public OutOfBoundsException(String message) {
super(“OutOfBoundsException “ + message);

}
}

public class LinkedList {

public Student get(int index) throws OutOfBoundsException {

But Java has IndexOutOfBoundsException

Now we have to know about both and handle both
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public class LinkedList {

public Student get(int index) throws IndexOutOfBoundsException {

Now we just have to know about and handle one
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public class LinkedList {

public Student get(int index) {
Student s = null;
try {

if (index >= size)
throw IndexOutOfBoundsException(“Bad index” + index);

now go find the right student

} catch (IndexOutOfBoundsException e) {
System.err.println(e.getMessage());

}
return s;

}

How does the caller know
an exception occured?
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public class LinkedList {

public Student get(int index) {
if (index >= size) {

System.err.println(e.getMessage());
return null;

Student s;
now go find the right student

return s;
}

Does the same thing

Simpler

Tuesday, February 10, 15



23

public class LinkedList {

public Student get(int index) throws IndexOutOfBoundsException {
Student s = null;
if (index >= size)

throw IndexOutOfBoundsException(“Bad index” + index);

now go find the right student

return s;
}

LinkedList can not know what application
should do when index is out of bounds
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class Node {
public Object data;
public Node next;
public Node previous;

}

struct Node {
Object data;
Node next;
Node previous;

}

class Node {
private Object data;
private Node next;
private Node previous;

public Object getData() {return data;}
public Node getNext() {return next;}
public Node getPrevious() {

return next;
}
public void setData(Object item) {

data = item;
}
public void setNext(Node newNext) {

next = newNext;
}
public void set Previous(Node n) {

next = n;
}

}

Where are the operations?
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Class
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Represents an abstraction

Encapsulates data and operations of the abstraction

Hide design decisions/details

Data

Operations
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Not so much a definition of a class as a goal how we should use a class. 



Heuristics
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2.1 All data should be hidden within it class

2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place
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class Node {
public Object data;
public Node next;
public Node previous;

}

struct Node {
Object data;
Node next;
Node previous;

}

Where are the operations?

Why are you writing 1/2 a class?
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In an app using Linked List 
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public class LinkedList {
private Node head;

public Node getKthElement(int k) {}

There will be many uses of the list

public void foo(LinkedList x) {
blah
blah
z = x.getKthElement(3);
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What happens if we decide using an ArrayList would be better? 

Shotgun surgery

Have to find all uses of “getKthElement” and replace with “get”

Find all uses of linked list methods and replace with ArrayList methods

Have to find all occurrences of “LinkedList” and replace with “ArrayList”

Replace “new LinkedList” with “new ArrayList”
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public class LinkedList {
private Node head;

public Node getKthElement(int k) {}

public class LinkedList<E> {
private Node<E> head;

public <E> get(int k) {}

In your classes use the names that your library uses for similar purposes 
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Now what happens if we decide using an ArrayList would be better? 

Shotgun surgery

Have to find all occurrences of “LinkedList” and replace with “ArrayList”

Replace “new LinkedList” with “new ArrayList”
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java.util.List
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Interface for ordered collections

Defines the methods in ordered collection classes

ArrayList, 
AttributeList, 
CopyOnWriteArrayList, 
LinkedList, 
RoleList, 
RoleUnresolvedList, 
Stack, 
Vector
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http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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public class LinkedList<E> {
private Node<E> head;

public <E> get(int k) {}

public class LinkedList<E> implements List {
private Node<E> head;

public <E> get(int k) {}

LinkedList<Students> students = new LinkedList<>();

List<Students> students = new LinkedList<>();

public void foo(LinkedList x) {
blah
blah

public void foo(List x) {
blah
blah
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Now what happens if we decide using an ArrayList would be better? 

Just replace “new LinkedList” with “new ArrayList”
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That is why you points for
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getSize()
getKthElement
getStudent
addStudent
insert
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class LinkedList {
private Node head;
private Node current;

public Student get(int n) throws IndexOutOfBoundsException {
if (root == null) {

throw new IndexOutOfBoundsException(“ list is empty”);
} else if (getSize() <= n) {

throw new IndexOutOfBoundsException(“ index ” + n + “out of bounds”);
}

current = root;
Student s = null;
int i = 0;  //variable that keeps track of where we are
blah

}

Tuesday, February 10, 15


