
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2015

Doc 5 Assignment 1 Comments
Feb 10, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Tuesday, February 10, 15

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Topics

2

Class = data + operations
Abstraction
Information Hiding

Code Reuse
Modifiability
Safety

Tuesday, February 10, 15

3

public class LinkedList {

public void getKthElement(int k) {
blah
blah
System.out.println(blah);

void - not returning a value

getXXX - returning a value

Can not test using JUnit

Program can’t access elements of list

No use
No code reuse

Tuesday, February 10, 15

4

public class LinkedList {

public void displayProbationStudents() {
blah
blah
System.out.println(blah);
blah
System.out.println(blah);

Can not test using JUnit

Program can’t access elements of list

Can’t use in

Web app
Desktop app
Mobile App
Batch processing
Server side computing
Enterprise computing

Tuesday, February 10, 15

5

public class LinkedList {

public ArrayList getProbationStudents() {
ArrayList<Students> probation = new ArrayList<Student>():
blah
blah
return probation;

}

Somewhere else

LinkedList students = blah;
blah
ArrayList<Student> probation = students.getProbationStudents();
System.out.println(probation);

Tuesday, February 10, 15

6

public class LinkedList {

public ArrayList getProbationStudents() {
ArrayList<Students> probation = new ArrayList<Student>():
blah
blah
return probation;

}

Can test using JUnit

Program can access elements of list

Can use in

Web app
Desktop app
Mobile App
Batch processing
Server side computing
Enterprise computing

Tuesday, February 10, 15

7

Keep display code separate from computation

Makes computation resuable

Tuesday, February 10, 15

8

System.out.println

Part of view

Rarely use standard out for view

Use for debugging

Tuesday, February 10, 15

What Operations belong in LinkedList?

9

add element

retrieve element

remove element

remove all elements

test if element is in list

find all students on probation

find all students with 4.0 GPA

iterate over all elements in list

Tuesday, February 10, 15

10

public class LinkedList {

public Iterator iterator() { blah }

Somewhere else

LinkedList students = blah;
blah
iterator allStudents = students.iterator();
ArrayList<Student> probation = new ArrayList<Student>()
while (allStudents.hasNext()) {

Student current = allStudents.next();
if (current.onProbation())

probation.add(current);
}

Tuesday, February 10, 15

11

public class LinkedList {

public Iterator iterator() { blah }

Somewhere else

LinkedList students = blah;
blah
ArrayList<Student> probation = students.stream()

 .filter(each -> each.onProbation())
 .collect(Collector.toList());

Tuesday, February 10, 15

12

public class LinkedList {
private Node head;

public Node getKthElement(int k) {
Node current = head;
blah
blah
return current;

}

Violates information hiding

Not safe
Everyone has access to node
Can change linked list directly

Shotgun surgery
Change to node class can
require change to all users of list

Clients have to
Know about Node
Repeatedly pull data out of node

Tuesday, February 10, 15

13

public class LinkedList {
private Node head;

public Node getHead() {
return head;

}

public void add(Node element) {
blah

}

Violates information hiding

Tuesday, February 10, 15

14

class Node {
private Student data;
private Node next;
private Node previous;
etc,

}

class LinkedList {
private Node head;

Code Reuse

How often do we need list of students?

Tuesday, February 10, 15

15

class Node {
private Object data;
private Node next;
private Node previous;
etc,

}

class LinkedList {
private Node head;

Code Reuse

Now get list of objects

Used all the time

Tuesday, February 10, 15

16

class Node<E> {
private E data;
private Node next;
private Node previous;
etc,

}

class LinkedList<E> {
private Node<E> head;

Code Reuse

Now get list of objects

Used all the time

Now have type checking

Tuesday, February 10, 15

17

class Node {
private String name;
private String redId;
private float gpa;
private Node next;
private Node previous;
etc,

}

class LinkedList {
private Node head;

What is it?

Node?
Student?

Tuesday, February 10, 15

18

class LinkedList<E> {
private static Node<E> head;

public static void add(Object item) {
blah

}

LinkedList<Student> cs635 = new LinkedList<>();
LinkedList<Student> cs646 = new LinkedList<>();
cs635.add(joe);
cs646.add(pete);

Both list have both students

Really just one list

Tuesday, February 10, 15

19

public class OutOfBoundsException extends Exception {

public OutOfBoundsException(String message) {
super(“OutOfBoundsException “ + message);

}
}

public class LinkedList {

public Student get(int index) throws OutOfBoundsException {

But Java has IndexOutOfBoundsException

Now we have to know about both and handle both

Tuesday, February 10, 15

20

public class LinkedList {

public Student get(int index) throws IndexOutOfBoundsException {

Now we just have to know about and handle one

Tuesday, February 10, 15

21

public class LinkedList {

public Student get(int index) {
Student s = null;
try {

if (index >= size)
throw IndexOutOfBoundsException(“Bad index” + index);

now go find the right student

} catch (IndexOutOfBoundsException e) {
System.err.println(e.getMessage());

}
return s;

}

How does the caller know
an exception occured?

Tuesday, February 10, 15

22

public class LinkedList {

public Student get(int index) {
if (index >= size) {

System.err.println(e.getMessage());
return null;

Student s;
now go find the right student

return s;
}

Does the same thing

Simpler

Tuesday, February 10, 15

23

public class LinkedList {

public Student get(int index) throws IndexOutOfBoundsException {
Student s = null;
if (index >= size)

throw IndexOutOfBoundsException(“Bad index” + index);

now go find the right student

return s;
}

LinkedList can not know what application
should do when index is out of bounds

Tuesday, February 10, 15

24

class Node {
public Object data;
public Node next;
public Node previous;

}

struct Node {
Object data;
Node next;
Node previous;

}

class Node {
private Object data;
private Node next;
private Node previous;

public Object getData() {return data;}
public Node getNext() {return next;}
public Node getPrevious() {

return next;
}
public void setData(Object item) {

data = item;
}
public void setNext(Node newNext) {

next = newNext;
}
public void set Previous(Node n) {

next = n;
}

}

Where are the operations?

Tuesday, February 10, 15

Class

25

Represents an abstraction

Encapsulates data and operations of the abstraction

Hide design decisions/details

Data

Operations

Tuesday, February 10, 15

Not so much a definition of a class as a goal how we should use a class.

Heuristics

26

2.1 All data should be hidden within it class

2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place

Tuesday, February 10, 15

Numbers of the heuristics are from the text Object-Oriented Design Heuristics by Riel

27

class Node {
public Object data;
public Node next;
public Node previous;

}

struct Node {
Object data;
Node next;
Node previous;

}

Where are the operations?

Why are you writing 1/2 a class?

Tuesday, February 10, 15

In an app using Linked List

28

public class LinkedList {
private Node head;

public Node getKthElement(int k) {}

There will be many uses of the list

public void foo(LinkedList x) {
blah
blah
z = x.getKthElement(3);

Tuesday, February 10, 15

29

What happens if we decide using an ArrayList would be better?

Shotgun surgery

Have to find all uses of “getKthElement” and replace with “get”

Find all uses of linked list methods and replace with ArrayList methods

Have to find all occurrences of “LinkedList” and replace with “ArrayList”

Replace “new LinkedList” with “new ArrayList”

Tuesday, February 10, 15

30

public class LinkedList {
private Node head;

public Node getKthElement(int k) {}

public class LinkedList<E> {
private Node<E> head;

public <E> get(int k) {}

In your classes use the names that your library uses for similar purposes

Tuesday, February 10, 15

31

Now what happens if we decide using an ArrayList would be better?

Shotgun surgery

Have to find all occurrences of “LinkedList” and replace with “ArrayList”

Replace “new LinkedList” with “new ArrayList”

Tuesday, February 10, 15

java.util.List

32

Interface for ordered collections

Defines the methods in ordered collection classes

ArrayList,
AttributeList,
CopyOnWriteArrayList,
LinkedList,
RoleList,
RoleUnresolvedList,
Stack,
Vector

Tuesday, February 10, 15

http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/8/docs/api/javax/management/AttributeList.html
http://docs.oracle.com/javase/8/docs/api/javax/management/AttributeList.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/8/docs/api/javax/management/relation/RoleList.html
http://docs.oracle.com/javase/8/docs/api/javax/management/relation/RoleList.html
http://docs.oracle.com/javase/8/docs/api/javax/management/relation/RoleUnresolvedList.html
http://docs.oracle.com/javase/8/docs/api/javax/management/relation/RoleUnresolvedList.html
http://docs.oracle.com/javase/8/docs/api/java/util/Stack.html
http://docs.oracle.com/javase/8/docs/api/java/util/Stack.html
http://docs.oracle.com/javase/8/docs/api/java/util/Vector.html
http://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

33

public class LinkedList<E> {
private Node<E> head;

public <E> get(int k) {}

public class LinkedList<E> implements List {
private Node<E> head;

public <E> get(int k) {}

LinkedList<Students> students = new LinkedList<>();

List<Students> students = new LinkedList<>();

public void foo(LinkedList x) {
blah
blah

public void foo(List x) {
blah
blah

Tuesday, February 10, 15

34

Now what happens if we decide using an ArrayList would be better?

Just replace “new LinkedList” with “new ArrayList”

Tuesday, February 10, 15

That is why you points for

35

getSize()
getKthElement
getStudent
addStudent
insert

Tuesday, February 10, 15

36

class LinkedList {
private Node head;
private Node current;

public Student get(int n) throws IndexOutOfBoundsException {
if (root == null) {

throw new IndexOutOfBoundsException(“ list is empty”);
} else if (getSize() <= n) {

throw new IndexOutOfBoundsException(“ index ” + n + “out of bounds”);
}

current = root;
Student s = null;
int i = 0; //variable that keeps track of where we are
blah

}

Tuesday, February 10, 15

