
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2015

Doc 8 Visitor, Pattern Intro
Feb 26, 2015

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, February 26, 15

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Visitor Pattern

Thursday, February 26, 15

Visitor

3

Intent
Represent an operation to be performed on the
elements of an object structure

Visitor lets you define a new operation without
changing the classes of the elements on which it
operates

Thursday, February 26, 15

Tree Example

4

class Node { ... }

class InnerNode extends Node {...}

class LeafNode extends Node {...}

class Tree { ... }

Thursday, February 26, 15

Tree Printing

5

HTML Print

PDF Print

TeX Print

RTF Print

Others likely in future

Operations are complex

Not part of BST abstraction

Need to traverse tree

Do different things on different types of nodes

Thursday, February 26, 15

Assume

6

Document

HTMLDocument PDFDocument TeXDocument

Thursday, February 26, 15

First Attempt

7

print(Tree source, Document output) {
foreach(Node current : source) {

if current.isInnerNode() && output.isHtml() {
print inner node on html document

} else if current.isLeafNode() && output.isHtml() {
print leaf node on html document

} else if current.isInnerNode() && output.isPDF() {
print inner node on pdf document

} else if current.isLeafNode() && output.isPDF() {
print leaf node on pdf document

} etc.

Thursday, February 26, 15

Second Attempt

8

Create Printer Classes

Use iterator to access all elements

Process each element

Thursday, February 26, 15

Second Attempt

9

class TreePrinter {
public void printTree (Tree toPrint, Document output) {

foreach(Node current : source) {
if (current.isLeafNode())

printLeafNode(current, output);
else if (current.isInternalNode())

printInternalNode(current, output);
}

}

private void printLeafNode(Node current, Document output) {
if output.isHtml()

print leaf node on html document
else if output.isPDF()

print leaf node on PDF document
else if etc

}

Hidden case
statements

Thursday, February 26, 15

What we would like

10

class TreePrinter {
public void printTree (Tree source, Document output) {

foreach(Node current : source) {
printNode(current, output);

}
}

private void printNode(InnerNode current, HTMLDocument output) {
print inner node on html document

}

private void printNode(LeafNode current, HTMLDocument output) {
print leaf node on html document

}

private void printNode(InnerNode current, PDFDocument output) {
print inner node on html document

}
etc

Compile Error

Thursday, February 26, 15

Overloaded Methods

11

Which overloaded method to run

Selected at compile time

Based on declared type of parameter

Does not use runtime information

Thursday, February 26, 15

Use Subclasses

12

TreePrinter

HTMLTreePrinter PDFTreePrinter TeXTreePrinter

Thursday, February 26, 15

Third Attempt

13

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
if (current.isLeafNode())

printLeafNode(current, output);
else if (current.isInternalNode())

printInternalNode(current, output);
}

}

public Document getDocument() { return output;}

private abstract void printLeafNode(Node current);
private abstract void printInnerNode(Node current);

}

Thursday, February 26, 15

Third Attempt

14

class HTMLTreePrinter extends TreePrinter {

private void printLeafNode(Node current) {
print leaf node on html document

}

private void printInnerNode(Node current) {
print inner node on html document

}
}

Thursday, February 26, 15

Overloaded Method

15

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
printNode(current);

}
}

public Document getDocument() { return output;}

private abstract void printNode(LeafNode current);
private abstract void printNode(InnerNode current);
}

Compile Error

Thursday, February 26, 15

Key Idea

16

Receiver of method is determined at runtime

x.toString();

Send a message to Nodes to determine what type of node we have

Thursday, February 26, 15

Add Methods to Nodes

17

class InnerNode extends Node {
 public void print(TreePrinter printer) {
 printer.printInnerNode(this);
 }
}

class LeafNode extends Node {
 public void print(TreePrinter printer) {
 aVisitor.printLeafNode(this);
 }
}

class Node {
abstract public void print(TreePrinter printer);

}

Thursday, February 26, 15

Now we can Use Polymorphism

18

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
current.print(this);

}
}

public Document getDocument() { return output;}

public abstract void printLeafNode(Node current);
public abstract void printInnerNode(Node current);

}

Thursday, February 26, 15

What Have we gained

19

No if statements

Can add more types of Documents by adding subclasses

Work for a Document is in one place

Divided work into small parts

Thursday, February 26, 15

We can use method overloading

20

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
current.print(this);

}
}

public Document getDocument() { return output;}

public abstract void printNode(InnerNode current);
public abstract void printNode(LeafNode current);

}

class InnerNode extends Node {
 public void print(TreePrinter printer)
{
 printer.printNode(this);
 }
}

class LeafNode extends Node {
 public void print(TreePrinter printer)
{
 aVisitor.printNode(this);
 }
}

Thursday, February 26, 15

But We don’t gain anything

21

class TreePrinter {
Document output;
public void printTree (Tree toPrint) {

foreach(Node current : source) {
current.print(this);

}
}

public Document getDocument() { return output;}

public abstract void printNode(InnerNode current);
public abstract void printNode(LeafNode current);

}

Still need to know
about each node type

Thursday, February 26, 15

One Last Problem

22

Modified the nodes for a specific issue

For each issue need to add methods to node!?!

Make the structure generic

Thursday, February 26, 15

In The Nodes

23

class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeNode(this);
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeLeaf(this);
 }
}

class Node {
abstract public void accept(Visitor aVisitor);

}

Thursday, February 26, 15

Visitor

24

abstract class Visitor {

 abstract void visitBinaryTreeNode(BinaryTreeNode);

 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);
}

class HTMLPrintVisitor extends Visitor {

 public void visitBinaryTreeNode(BinaryTreeNode x) {
 HTML print code here
 }

 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}
}

Thursday, February 26, 15

25

Visitor printer = new HTMLPrintVisitor();
Tree toPrint;

Iterator nodes = toPrint.iterator();
foreach(Node current : source) {

current.accept(printer);
}

Node object calls correct
method in Printer

Thursday, February 26, 15

Tree Example

26

class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeNode(this);
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeLeaf(this);
 }
}

abstract class Visitor {
 abstract void visitBinaryTreeNode(BinaryTreeNode);
 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);
}

class HTMLPrintVisitor extends Visitor {
 public void visitBinaryTreeNode(BinaryTreeNode x) {
 HTML print code here
 }
 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}
}

Put operations into separate object - a visitor

Pass the visitor to each element in the structure

The element then activates the visitor

Visitor performs its operation on the element

Each visitX method only deals with on type of element

Thursday, February 26, 15

Tree Example

27

Visitor

Thursday, February 26, 15

Double Dispatch

28

Note that a visit to one node requires two method calls

 Node example = new BinaryTreeLeaf();
 Visitor traveler = new HTMLPrintVisitor();
 example.accept(traveler);

BinaryTreeLeaf HTMLPrintVisitor

example.accept(traveler)

traveler.visitLeafNode(this)

Thursday, February 26, 15

Issue - Who does the traversal?

29

Visitor

Elements in the Structure

Iterator

Thursday, February 26, 15

When to Use the Visitor

30

Have many classes of objects with differing interfaces, and you want to perform
operations on these objects that depend on their concrete classes

When many distinct and unrelated operations need to be preformed on objects in
an object structure and you want to avoid cluttering the classes with these
operations

When the classes defining the structure rarely change, but you often want to
define new operations over the structure

Thursday, February 26, 15

Consequences

31

Visitors makes adding new operations easier

Visitors gathers related operations, separates
unrelated ones

Adding new ConcreteElement classes is hard

Visiting across class hierarchies

Accumulating state

Breaking encapsulation

Thursday, February 26, 15

Avoiding the accept() method

32

Visitor pattern requires elements to have an accept method

Sometimes this is not possible

 You don’t have the source for the elements

Aspect Oriented Programming

AspectJ eleminates the need for an accept method in aspect oriented Java

AspectS provides a similar process for Smalltalk

Thursday, February 26, 15

Clojure, Lisp & Multi-methods

33

Multi-methods in Clojure do select overloaded method
At run-time
Based on argument types

No need for visitor pattern

void printNode(InnerNode current, HTMLDocument output) { blah }

void printNode(LeafNode current, HTMLDocument output) { blah }

void printNode(InnerNode current, PDFDocument output) { blah }

etc.

Tree source = YYY;
Document output = new XXX();
foreach(Node current : source)

printNode(current, output);

Thursday, February 26, 15

Example - Magritte

34

Web applications have data (domain models)

We need to
 Display the data
 Enter the data
 Validate data
 Store Data

Thursday, February 26, 15

Magritte

35

For each field in a domain model (class) provide a description

Description contains
 Data type Display string
 Field name Constraints

descriptionFirstName
 ^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)
 beRequired;
 yourself.

descriptionBirthday
 ^ (MADateDescription auto: 'birthday' label: 'Birthday' priority: 70)
 between:(Date year: 1900) and:Datetoday;
 yourself

Thursday, February 26, 15

Magritte

36

Each domain model has a collection of descriptions

Different visitors are used to

 Generate html to display data

 Generate form to enter the data

 Validate data from form

 Save data in database

Thursday, February 26, 15

Sample Page

37

 editor := (Person new asComponent)
 addValidatedSwitch;
 yourself.
 result := self call: editor.

Thursday, February 26, 15

http://127.0.0.1:8008/personeditor
http://127.0.0.1:8008/personeditor

Refactoring: Move Accumulation to Visitor

38

A method accumulates information from heterogenous classes

Move the accumulation task to a Visitor that can visit each class to
accumulate the information

so

Thursday, February 26, 15

See Refactoring to Patterns, Kerievsky, 2005, pp 320-338 for details

39

Pattern Intro

Thursday, February 26, 15

Pattern Beginnings

40

"Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice"

"Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution"

A Pattern Language, Christopher Alexander, 1977

Thursday, February 26, 15

A Place To Wait

41

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time hanging around doing nothing

Cannot enjoy the time since you do not know when you must leave

Classic "waiting room"
Dreary little room
People staring at each other
Reading a few old magazines
Offers no solution

Fundamental problem
How to spend time "wholeheartedly" and
Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
 Playground beside Pediatrics Clinic
 Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
 A window seat that looks down on a street
 A protected seat in a garden
 A dark place and a glass of beer
 A private seat by a fish tank

Thursday, February 26, 15

A Place To Wait

42

Therefore:

"In places where people end up waiting create a situation which makes the
waiting positive. Fuse the waiting with some other activity - newspaper, coffee,
pool tables, horseshoes; something which draws people in who are not simple
waiting. And also the opposite: make a place which can draw a person waiting
into a reverie; quiet; a positive silence"

Thursday, February 26, 15

Chicken And Egg

43

Problem

Two concepts are each a prerequisite of the other
To understand A one must understand B
To understand B one must understand A
A "chicken and egg" situation

Constraints and Forces

First explain A then B
 Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain the other one
 People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail in each iteration

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of
Program Design 2, Addison Wesley, 1996

Thursday, February 26, 15

Design Principle 1

44

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define common interfaces for a set of classes

Declare variables to be instances of the abstract class not instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of objects they use, as long as the objects adhere to
the interface the client expects

Client classes/objects remain unaware of the classes that implement these objects.
Clients only know about the abstract classes (or interfaces) that define the interface.

Thursday, February 26, 15

Programming to an Interface

45

Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add(aStudent);

students can be any collection type

We can change our mind on what type to use

Thursday, February 26, 15

Interface & Duck Typing

46

In dynamically typed languages programming to an interface is the norm

Dynamically typed languages tend to lack a way to declare an interface

Thursday, February 26, 15

Design Principle 2

47

Favor object composition over class inheritance

Composition
 Allows behavior changes at run time
 Helps keep classes encapsulated and focused on one task
 Reduce implementation dependencies

Inheritance
class A {
 Foo x
 public int complexOperation() {
 blah }
}

class B extends A {
 public void bar() { blah}
}

Composition
class B {
 A myA;
 public int complexOperation() {
 return myA.complexOperation()
 }

 public void bar() { blah}
}

Thursday, February 26, 15

Designing for Change

48

Creating an object by specifying a class explicitly
 Abstract factory, Factory Method, Prototype

Dependence on hardware and software platforms
 Abstract factory, Bridge

Dependence on object representations or implementations
 Abstract factory, Bridge, Memento, Proxy

Algorithmic dependencies
 Builder, Iterator, Strategy, Template Method, Visitor

Tight Coupling
 Abstract factory, Bridge, Chain of Responsibility,
 Command, Facade, Mediator, Observer

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite,
 Decorator, Observer, Strategy

Dependence on specific operations
 Chain of Responsibility, Command

Inability to alter classes conveniently
 Adapter, Decorator, Visitor

Thursday, February 26, 15

Kent Beck's Rules for Good Style

49

One and only once

In a program written in good style, everything is said once and only once

Methods with the same logic
Objects with same methods
Systems with similar objects

 rule is not satisfied

Thursday, February 26, 15

Lots of little Pieces

50

"Good code invariably has small methods and small objects"

Small pieces are needed to satisfy "once and only once"

Make sure you communicate the big picture or you get a mess

Thursday, February 26, 15

Rates of change

51

Don't put two rates of change together

An object should not have a field that changes every second & a field that
change once a month

A collection should not have some elements that are added/removed every
second and some that are add/removed once a month

An object should not have code that has to change for each piece of
hardware and code that has to change for each operating system

Thursday, February 26, 15

Replacing Objects

52

Good style leads to easily replaceable objects

"When you can extend a system solely by adding new objects without
modifying any existing objects, then you have a system that is flexible and
cheap to maintain"

Thursday, February 26, 15

Moving Objects

53

"Another property of systems with good style is that their objects can be
easily moved to new contexts"

Thursday, February 26, 15

