
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2015

Doc 10 Memento, Command
Mar 4, 2014

Copyright ©, All rights reserved. 2015 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this 
document.

Thursday, March 5, 15

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml


2

Undo

Thursday, March 5, 15



3

Undo

Some examples

Counter 

counter.increase();  //increase counter by 1
counter.decrease();  //decrease counter by 1

Thursday, March 5, 15



4

Undo

Some examples

Text editing 

Replace "Should" with "Could" at start of 3rd sentence in 5 paragraph 

Thursday, March 5, 15



Undo - Some Issues

5

Redo

Multiple undo

Thursday, March 5, 15



6

Memento

Thursday, March 5, 15



Memento

7

undo, rollbacks
Orginator
setMemento( Menmento m)
createMemento()
state

Memento
getState()
setState()
state

Caretaker
mementos

state=m->getState()

return new Memento( state )

Only originator:

Can access Memento’s get/set state methods
Create Memento

Store an object's internal state, so the object can be restored to this state later 
without violating encapsulation

Thursday, March 5, 15



Example

8

package Examples;
class Memento{
 private Hashtable savedState = new Hashtable();
 
 protected Memento() {}; //Give some protection
 
 protected void setState( String stateName, Object stateValue ) { 
  savedState.put( stateName, stateValue );
 } 
 
 protected Object getState( String stateName) {
  return savedState.get( stateName);
 } 
  
 protected Object getState(String stateName, Object defaultValue ) {
  if ( savedState.containsKey( stateName ) )
   return savedState.get( stateName);
  else
   return defaultValue;
 } 
}

Thursday, March 5, 15



Sample Originator

9

package Examples;
class ComplexObject {
 private String name;
 private int someData;
 private Vector objectAsState = new Vector();
 
 public Memento createMemento() {
  Memento currentState = new Memento();
  currentState.setState( "name", name );
  currentState.setState( "someData", new Integer(someData) );
  currentState.setState( "objectAsState", objectAsState.clone() );
  return currentState;
 }
 
 public void restoreState( Memento oldState) {
  name = (String) oldState.getState( "name", name );
  objectAsState = (Vector) oldState.getState( "objectAsState" );
  Integer data = (Integer) oldState.getState( "someData");
  someData = data.intValue();
 }

Thursday, March 5, 15



10

Why not let the Originator save its old state?
class ComplexObject {
 private String name;
 private int someData;
 private Vector objectAsState = new Vector();
 private Stack history; 

 public createMemento() {
  Memento currentState = new Memento();
  currentState.setState( "name", name );
  currentState.setState( "someData", new Integer(someData) );
  currentState.setState( "objectAsState", objectAsState.clone() );
  history.push(currentState);
 }
 
 public void restoreState() {
  Memento oldState = history.pop();
  name = (String) oldState.getState( "name", name );
  objectAsState = (Vector) oldState.getState( "objectAsState" );
  Integer data = (Integer) oldState.getState( "someData");
  someData = data.intValue();
 }

Thursday, March 5, 15



11

Some Consequences

Expensive
Space

Narrow & Wide interfaces - Keep data hidden 

class Originator {
 private String state;
 
 private class Memento {
  private String state;
  public Memento(String stateToSave) 
   { state = stateToSave; }
       public String getState() { return state; }
  }

  public Object memento() 
   { return new Memento(state);}
  

Class Memento {
 public:
  virtual ~Memento();
 private:
  friend class Originator;
  Memento();
  void setState(State*);
  State* GetState();

Thursday, March 5, 15



Using Clone to Save State

12

interface Memento extends Cloneable { }

class ComplexObject implements Memento {
 private String name;
 private int someData;
 
 public Memento createMemento() {
  Memento myState = null;
  try {
   myState =  (Memento) this.clone();
  }
  catch (CloneNotSupportedException notReachable) {
  }
  return myState;
 }
  
 public void  restoreState( Memento savedState) {
  ComplexObject myNewState = (ComplexObject)savedState;
  name = myNewState.name;
  someData = myNewState.someData;
 }
}

Thursday, March 5, 15



Copying Issues

13

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects

Thursday, March 5, 15



Shallow Copy Verse Deep Copy

14

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom
*

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

Original Objects

Deep Copy

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

aChair

aTable

Deeper Copy

Thursday, March 5, 15



Cloning Issues - C++ Copy Constructors

15

class Door {
 public:
  Door();
  Door( const Door&);
  virtual Door* clone() const;
 
  virtual void Initialize( Room*, Room* );
  // stuff not shown
 private:
  Room* room1;
  Room* room2;
 }
 
Door::Door ( const Door& other ) //Copy constructor {
 room1 = other.room1;
 room2 = other.room2;
 }
 
Door* Door::clone()  const {
 return new Door( *this );
 }

Thursday, March 5, 15



Cloning Issues - Java Clone

16

Shallow Copy
class Door implements Cloneable {
 private Room room1;
 private Room room2;

 public Object clone() throws  CloneNotSupportedException {
  return super.clone();
 }
}

Deep Copy
public class Door implements Cloneable {
 private Room room1;
 private Room room2;
 
 public Object clone() throws CloneNotSupportedException {
  Door thisCloned =(Door) super.clone();
  thisCloned.room1 = (Room)room1.clone();
  thisCloned.room2 = (Room)room2.clone();
  return thisCloned;
 }
}

Thursday, March 5, 15



What if Protocol

17

Make a copy of the Originator

Perform operations on the copy

Check if operations invalidate the internal state of copy

If so discard the copy & raise an exception

Else perform the operations on the Originator

When there are complex validations or
performing operations that make it difficult to restore later

Thursday, March 5, 15



Memento & Functional Programming

18

Immutable data
Data that can not change
Functional languages have primarily immutable data

If data can not change 
Don’t need memento pattern

Thursday, March 5, 15



19

Command

Thursday, March 5, 15



Command

20

Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Example
Invoker be a menu
Client be a word processing program
Receiver a document
Action be save

Encapsulates a request as an object

Thursday, March 5, 15



Sample Command

21

public abstract class Command {
public abstract void execute();
public abstract void undo();

}

public class IncreaseCommand extends Command {
private Counter subject;

public IncreaseCommand(Counter toIncrease) {
subject = toIncrease;

public abstract void execute() { subject.increase() };

public abstract void undo() { subject.decrease() };
}

Thursday, March 5, 15



Sample Command - Text Editing

22

Requires more details 

Text that is being edited
Location in text to changed
Replacement text

Undo requires 

Text that is being edited
Location in text that was changed
Text that was replaced

Thursday, March 5, 15



When to Use the Command Pattern

23

Need action as a parameter (replaces callback functions)
Lambda's replace this use

Specify, queue, and execute requests at different times

Undo

Logging changes

High-level operations built on primitive operations

 A transaction encapsulates a set of changes to data

 Systems that use transaction often can use the command 
pattern

Macro language

Thursday, March 5, 15



Consequences

24

Command decouples the object that invokes the operation from the one that knows how 
to perform it

It is easy to add new commands, because you do not have to change existing classes 

You can assemble commands into a composite object

Thursday, March 5, 15



Pluggable Commands

25

Can create one general Command using reflection

Don’t hard code the method called in the command

Pass the method to call an argument

Thursday, March 5, 15



Java Example of Pluggable Command

26

import java.util.*;
import java.lang.reflect.*;

public class Command
 {
 private Object receiver;
 private Method command;
 private Object[] arguments;
 
 public Command(Object receiver, Method command, 
       Object[] arguments )
  {
  this.receiver = receiver;
  this.command = command;
  this.arguments = arguments;
  }

 public void execute() throws InvocationTargetException, 
        IllegalAccessException
  {
  command.invoke( receiver, arguments );
  }
 }

Thursday, March 5, 15



Using the Pluggable Command

27

public class Test {
 public static void main(String[] args) throws Exception 
  {
  Vector sample = new Vector();
  Class[] argumentTypes = { Object.class };
  Method add = 
   Vector.class.getMethod( "addElement", argumentTypes);
  Object[] arguments = { "cat" };
  
  Command test = new Command(sample, add, arguments );
  test.execute();
  System.out.println( sample.elementAt( 0));
  }
 }

Output
cat

Thursday, March 5, 15



Pluggable Commands using Lambdas

28

public interface Command {
void execute();

}

public class PluggableCommand {
Command do;
Command undo;

public PluggableCommand(Command do, Command undo) {
this.do = do;
this.undo = undo;

}

public void execute() { do.execute(); }

public void undo() { undo.execute(); }

Thursday, March 5, 15



Pluggable Commands using Lambdas

29

final Counter example = new Counter();
PluggableCommand increase;

increase = new PluggableCommand( 
() -> example.increase(),
() -> example.decrease());

increase.execute();

Note 
Java's lambdas put restrictions on the variable example

Thursday, March 5, 15



Command Pattern & Lambda

30

Lambda’s can replace command objects for
Callbacks
Batch processing
Logging
Macro language

Thursday, March 5, 15



31

Command Processor Pattern

Thursday, March 5, 15



Command Processor Pattern

32

Command Processor manages the command objects

The command processor:

 Contains all command objects

 Schedules the execution of commands

 May store the commands for later unto

 May log the sequence of commands for testing purposes

 Uses singleton to insure only one instance

Thursday, March 5, 15



Structure

33

Client

Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Command

Processor

commandStack

doIt(command)
undoIt()

creates

transfer
command

performs

stores

Thursday, March 5, 15



Dynamics

34

Command
ProcessorClient

MakeBold
Command

Document

request

undo
request undoIt() undo()

delete()

restoreText()

getSelection()

makeBold()

do()
doIt()

create()

makeBold
command

Thursday, March 5, 15



Benefits

35

Flexibility in the way requests are activated

 Different user interface elements can generate the same kind of command object

 Allows the user to configure commands performed by a user interface element

Flexibility in the number and functionality of requests

 Adding new commands and providing for a macro language comes easy

Programming execution-related services

 Commands can be stored for later replay
 Commands can be logged
 Commands can be rolled back

Testability at application level

Concurrency

 Allows for the execution of commands in separate threads

Thursday, March 5, 15



Liabilities

36

Efficiency loss

Potential for an excessive number of command classes

 Try reducing the number of command classes by:

  Grouping commands around abstractions
  Unifying simple commands classes by passing the receiver object as a 
parameter

Complexity

 How do commands get additional parameters they need?

Thursday, March 5, 15


