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Review

2

Object-Oriented Programming is good as it promotes 
Code reuse
More readable code
More maintainable code
Better designs
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Basic OO Heuristics
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Keep related data and behavior in one place

A class should capture one and only one key abstraction

Beware of classes that have many accessor methods defined in their public interface
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OO History
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Objects as a formal concept in programming - Simula 67

Smalltalk introduced the term object-oriented programming - 1970s

Became dominant programming methodology
Early and mid 1990s
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So Why is Software Still so Bad?
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Code Smell
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Hint that something has gone wrong somewhere in your code

http://c2.com/cgi/wiki?CodeSmell
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Lists of Code Smells
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Coding Horror: Code Smells

http://www.codinghorror.com/blog/2006/05/code-smells.html

http://c2.com/cgi/wiki?CodeSmell

Cunningham wiki c2
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Comments
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There's a fine line between comments that illuminate and comments that obscure.

 Are the comments necessary? 

Do they explain "why" and not "what"? 

Can you refactor the code so the comments aren't required? 

And remember, you're writing comments for people, not machines.

http://blog.codinghorror.com/code-smells/
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Uncommunicative Name, Vague Identifier
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Does the name of the method succinctly describe what that method does? 

Could you read the method's name to another developer and have them explain 
to you what it does? 

If not, rename it or rewrite it.

meetsCriteria
flag
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Inconsistent Names
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Pick a set of standard terminology and stick to it throughout your methods. 

If you have Open(), you should probably have Close().

Thursday, January 28, 16



Type Embedded in Name
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Avoid placing types in method names; 

it's not only redundant, but it forces you to change the name if the type changes.
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Conditional Complexity
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Watch out for large conditional logic blocks

Particularly blocks that tend to grow larger or change significantly over time. 

Consider alternative object-oriented approaches such as 
decorator, 
strategy, or 
state.
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Dead Code
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Ruthlessly delete code that isn't being used. 

That's why we have source control systems!
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Code Smell - Utility Method
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Utility methods are a sign that related data and operations are not together
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Java & OO
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In many situations we can not OO in Java

Can not keep data and operations together in many of Java's existing classes

Ruby, Objective-C & Smalltalk allow you to add to existing classes
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Result
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Can't practice OO in small cases

Develop poor habits

Lose benefits of OO but don't noticce
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One Responsibility Rule
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"A class has a single responsibility: it does it all, does it well, and does it only"

Bertrand Meyer

Try to describe a class in 25 words or less, and not to use "and" or "or"

If can not do this you may have more than one class
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Duplicate Code
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Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Thursday, January 28, 16



19

The average method size should be less than 8 lines of code (LOC) for Smalltalk 
and 24 LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class
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Mark Lorenz, Object-Oriented Software Development: A Practical Guide, 1993, Appendix I Measures and 
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Long Parameter List
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a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)
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Divergent Change
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If, over time, you make changes to a class that touch completely different 
parts of the class, it may contain too much unrelated functionality. 

Consider isolating the parts that changed in another class.
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ShotGun Surgery
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If a change in one class requires cascading changes in several related classes, 

consider refactoring so that the changes are limited to a single class.
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Middle Man
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If a class is delegating all its work, why does it exist? 

Cut out the middleman. 

Beware classes that are merely wrappers over other classes or 
existing functionality in the framework.
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Feature Envy
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A method seems more interested in a class other 
than the one it is in.
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Data Clumps
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Same three or four data items together in lots of places
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Primitive Obsession
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Don't use a gaggle of primitive data type variables as a poor man's substitute for a 
class. 

If your data type is sufficiently complex, write a class to represent it. 
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Switch Statements
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How do you program without them?
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Lazy Class

28

Classes should pull their weight. 

Every additional class increases the complexity of a project. 

If you have a class that isn't doing enough to pay for itself, 
can it be collapsed or combined into another class?
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Data Class

29

Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup 
object, they need to take some responsibility
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Inappropriate Intimacy
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Watch out for classes that spend too much time together, 
or classes that interface in inappropriate ways. 

Classes should know as little as possible about each other.
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Message Chains
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location = rat.getRoom().getMaze().getLocation()
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Negative Slope
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if (foo) {
if (bar) {

if (cat = dog) {
if (rat < 10) {

...
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Temporary Field
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Field is only used in certain circumstances

Common case
field is only used by an algorithm
Don't want to pass around long parameter list
Make parameter a field
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Refused Bequest
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Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class
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Solution Sprawl
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If it takes five classes to do anything useful, you might have solution sprawl. 

Consider simplifying and consolidating your design.
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Refactoring
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Refactoring
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Changing the internal structure of software that changes its observable behavior

Done to make the software easier to understand and easier to modify
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When to Refactor

38

Rule of three

Three strikes and you refactor
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When to Refactor
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When you add a new function
When you need to fix a bug
When you do a code review
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When Refactoring is Hard
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Databases

Changing published interfaces

Major design issues
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When you add a feature to a program

If needed Refactor the program to make it easy to add the  feature

Then add the feature
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Before you start refactoring

Make sure that you have a solid suite of tests

Test should be self-checking
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Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?
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Eclipse Refactoring
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Eclipse Refactoring Menu
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Rename Class
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public class Foo {
  public int foo() {
   return 10;
 }
}

public class Bar {
 public int bar() {
  Foo test = new Foo();
  return test.foo() + 99;
 }
}

public class NewFoo {
  public int foo() {
   return 10;
 }
}

public class Bar {
 public int bar() {
  NewFoo test = new NewFoo();
  return test.foo() + 99;
 }
}
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Eclipse Rename
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Move
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public class Foo {
 public int foo() { return 10;}
 
 public int fooTwo() { return 20; }
}

public class Bar {
 public int helperMethod(Foo test) {
  return test.foo() + test.fooTwo();
 }
 
 public int callHelper() {
  Foo data = new Foo();
  return helperMethod(data);
 }
}

public class Bar {
 public int callHelper() {
  Foo data = new Foo();
  return data.sum();
 }
}

public class Foo {
 public int foo() { return 10;}
 
 public int fooTwo() {return 20; }

 public int sum() {
  return foo() + fooTwo();
 }
}
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Eclipse Move
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Extract Class

50
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Refactoring Tool Issue
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People tend to only use the features they know 
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Refactoring Tool Issue
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Is a tool hard to use because I am unfamiliar with it or is it just hard to use
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Refactoring by 41 Professional Programmers
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Number of Programmers used 
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396
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From Refactoring Tools: Fitness for Purpose, Emerson Murphy-Hill and Andrew P. Black,http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.139.191&rep=rep1&type=pdf



Try In Eclipse
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Rename
Move
Encapsulate Field
Extract Method
Extract Class
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Unit Testing
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Johnson's Law

If it is not tested it does not work

The more time between coding and testing

 More effort is needed to write tests
 More effort is needed to find bugs
 Fewer bugs are found
 Time is wasted working with buggy code
 Development time increases
 Quality decreases

Testing

56
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Unit Testing
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Tests individual code segments

Automated tests
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Using print statements

Writing driver program in main

Writing small sample programs to run code

Running program and testing it be using it

What wrong with:

58
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We have a QA Team, so why should I write tests?

59
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First write the tests

Then write the code to be tested

Writing tests first saves time

 Makes you clear of the interface & functionality of the code 

 Removes temptation to skip tests

When to Write Tests

60
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Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid 

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test

61
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Adapted with permission from “A Short Catalog of 
Test Ideas” by Brian Marick, 
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly

62
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XUnit
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Free frameworks for Unit testing

SUnit originally written by Kent Beck 1994

JUnit written by Kent Beck & Erich Gamma

Available at: http://www.junit.org/

Ports to many languages at:
 http://www.xprogramming.com/software.htm
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XUnit Versions
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3.x
Old version
Works with a versions of Java

4.x
Current version 4.8.1
Uses Annotations
Requires Java 5 or later
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Simple Class to Test
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public class Adder {
 private int base;
 public Adder(int value) {
  base = value;
 }
 
 public int add(int amount) {
  return base + amount;
 }
}
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Creating Test Case in Eclipse
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Fill in dialog window &
 create the test cases

Creating Test Case in Eclipse

67
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Test Class
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import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestAdder {

 @Test
 public void testAdd() {
  Adder example = new Adder(3);
  assertEquals(4, example.add(1));
 }
 
 @Test
 public void testAddFail() {
  Adder example = new Adder(3);
  assertTrue(3 == example.add(1));
 }
}
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Running the Tests
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The result
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assertArrayEquals()
assertTrue()
assertFalse()
assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertNull()
assertNotNull()
fail()

Assert Methods

71
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For a complete list see http://kentbeck.github.com/junit/javadoc/latest/



Annotations
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After
AfterClass
Before
BeforeClass
Ignore
Rule
Test
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Using Before
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import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

public class TestAdder {
 Adder example;
 @Before
 public void setupExample() {
  example = new Adder(3);
 }
 
 @Test
 public void testAdd() {
  assertEquals(4, example.add(1));
 }
}
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