
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2016

Doc 3 Code Smells, Refactoring, Unit Tests
Jan 28, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, January 28, 16

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Review

2

Object-Oriented Programming is good as it promotes
Code reuse
More readable code
More maintainable code
Better designs

Thursday, January 28, 16

Basic OO Heuristics

3

Keep related data and behavior in one place

A class should capture one and only one key abstraction

Beware of classes that have many accessor methods defined in their public interface

Thursday, January 28, 16

OO History

4

Objects as a formal concept in programming - Simula 67

Smalltalk introduced the term object-oriented programming - 1970s

Became dominant programming methodology
Early and mid 1990s

Thursday, January 28, 16

http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula

So Why is Software Still so Bad?

5

Thursday, January 28, 16

Code Smell

6

Hint that something has gone wrong somewhere in your code

http://c2.com/cgi/wiki?CodeSmell

Thursday, January 28, 16

Lists of Code Smells

7

Coding Horror: Code Smells

http://www.codinghorror.com/blog/2006/05/code-smells.html

http://c2.com/cgi/wiki?CodeSmell

Cunningham wiki c2

Thursday, January 28, 16

Comments

8

There's a fine line between comments that illuminate and comments that obscure.

 Are the comments necessary?

Do they explain "why" and not "what"?

Can you refactor the code so the comments aren't required?

And remember, you're writing comments for people, not machines.

http://blog.codinghorror.com/code-smells/

Thursday, January 28, 16

Uncommunicative Name, Vague Identifier

9

Does the name of the method succinctly describe what that method does?

Could you read the method's name to another developer and have them explain
to you what it does?

If not, rename it or rewrite it.

meetsCriteria
flag

Thursday, January 28, 16

http://c2.com/cgi/fullSearch
http://c2.com/cgi/fullSearch

Inconsistent Names

10

Pick a set of standard terminology and stick to it throughout your methods.

If you have Open(), you should probably have Close().

Thursday, January 28, 16

Type Embedded in Name

11

Avoid placing types in method names;

it's not only redundant, but it forces you to change the name if the type changes.

Thursday, January 28, 16

Conditional Complexity

12

Watch out for large conditional logic blocks

Particularly blocks that tend to grow larger or change significantly over time.

Consider alternative object-oriented approaches such as
decorator,
strategy, or
state.

Thursday, January 28, 16

Dead Code

13

Ruthlessly delete code that isn't being used.

That's why we have source control systems!

Thursday, January 28, 16

Code Smell - Utility Method

14

Utility methods are a sign that related data and operations are not together

Thursday, January 28, 16

Java & OO

15

In many situations we can not OO in Java

Can not keep data and operations together in many of Java's existing classes

Ruby, Objective-C & Smalltalk allow you to add to existing classes

Thursday, January 28, 16

Result

16

Can't practice OO in small cases

Develop poor habits

Lose benefits of OO but don't noticce

Thursday, January 28, 16

One Responsibility Rule

17

"A class has a single responsibility: it does it all, does it well, and does it only"

Bertrand Meyer

Try to describe a class in 25 words or less, and not to use "and" or "or"

If can not do this you may have more than one class

Thursday, January 28, 16

http://c2.com/cgi/fullSearch
http://c2.com/cgi/fullSearch

Duplicate Code

18

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Thursday, January 28, 16

19

The average method size should be less than 8 lines of code (LOC) for Smalltalk
and 24 LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class

Thursday, January 28, 16
Mark Lorenz, Object-Oriented Software Development: A Practical Guide, 1993, Appendix I Measures and
Metrics

Long Parameter List

20

a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)

Thursday, January 28, 16

Divergent Change

21

If, over time, you make changes to a class that touch completely different
parts of the class, it may contain too much unrelated functionality.

Consider isolating the parts that changed in another class.

Thursday, January 28, 16

ShotGun Surgery

22

If a change in one class requires cascading changes in several related classes,

consider refactoring so that the changes are limited to a single class.

Thursday, January 28, 16

Middle Man

23

If a class is delegating all its work, why does it exist?

Cut out the middleman.

Beware classes that are merely wrappers over other classes or
existing functionality in the framework.

Thursday, January 28, 16

Feature Envy

24

A method seems more interested in a class other
than the one it is in.

Thursday, January 28, 16

Data Clumps

25

Same three or four data items together in lots of places

Thursday, January 28, 16

Primitive Obsession

26

Don't use a gaggle of primitive data type variables as a poor man's substitute for a
class.

If your data type is sufficiently complex, write a class to represent it.

Thursday, January 28, 16

Switch Statements

27

How do you program without them?

Thursday, January 28, 16

Lazy Class

28

Classes should pull their weight.

Every additional class increases the complexity of a project.

If you have a class that isn't doing enough to pay for itself,
can it be collapsed or combined into another class?

Thursday, January 28, 16

Data Class

29

Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup
object, they need to take some responsibility

Thursday, January 28, 16

Inappropriate Intimacy

30

Watch out for classes that spend too much time together,
or classes that interface in inappropriate ways.

Classes should know as little as possible about each other.

Thursday, January 28, 16

Message Chains

31

location = rat.getRoom().getMaze().getLocation()

Thursday, January 28, 16

Negative Slope

32

if (foo) {
if (bar) {

if (cat = dog) {
if (rat < 10) {

...

Thursday, January 28, 16

Temporary Field

33

Field is only used in certain circumstances

Common case
field is only used by an algorithm
Don't want to pass around long parameter list
Make parameter a field

Thursday, January 28, 16

Refused Bequest

34

Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class

Thursday, January 28, 16

Solution Sprawl

35

If it takes five classes to do anything useful, you might have solution sprawl.

Consider simplifying and consolidating your design.

Thursday, January 28, 16

36

Refactoring

Thursday, January 28, 16

Refactoring

37

Changing the internal structure of software that changes its observable behavior

Done to make the software easier to understand and easier to modify

Thursday, January 28, 16

When to Refactor

38

Rule of three

Three strikes and you refactor

Thursday, January 28, 16

When to Refactor

39

When you add a new function
When you need to fix a bug
When you do a code review

Thursday, January 28, 16

When Refactoring is Hard

40

Databases

Changing published interfaces

Major design issues

Thursday, January 28, 16

41

When you add a feature to a program

If needed Refactor the program to make it easy to add the feature

Then add the feature

Thursday, January 28, 16

42

Before you start refactoring

Make sure that you have a solid suite of tests

Test should be self-checking

Thursday, January 28, 16

43

Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?

Thursday, January 28, 16

44

Eclipse Refactoring

Thursday, January 28, 16

Eclipse Refactoring Menu

45

Thursday, January 28, 16

Rename Class

46

public class Foo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 Foo test = new Foo();
 return test.foo() + 99;
 }
}

public class NewFoo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 NewFoo test = new NewFoo();
 return test.foo() + 99;
 }
}

Thursday, January 28, 16

Eclipse Rename

47

Thursday, January 28, 16

Move

48

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() { return 20; }
}

public class Bar {
 public int helperMethod(Foo test) {
 return test.foo() + test.fooTwo();
 }

 public int callHelper() {
 Foo data = new Foo();
 return helperMethod(data);
 }
}

public class Bar {
 public int callHelper() {
 Foo data = new Foo();
 return data.sum();
 }
}

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() {return 20; }

 public int sum() {
 return foo() + fooTwo();
 }
}

Thursday, January 28, 16

Eclipse Move

49

Thursday, January 28, 16

Extract Class

50

Thursday, January 28, 16

Refactoring Tool Issue

51

People tend to only use the features they know

Thursday, January 28, 16

Refactoring Tool Issue

52

Is a tool hard to use because I am unfamiliar with it or is it just hard to use

Thursday, January 28, 16

Refactoring by 41 Professional Programmers

53

Number of Programmers used
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396

Thursday, January 28, 16

From Refactoring Tools: Fitness for Purpose, Emerson Murphy-Hill and Andrew P. Black,http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.139.191&rep=rep1&type=pdf

Try In Eclipse

54

Rename
Move
Encapsulate Field
Extract Method
Extract Class

Thursday, January 28, 16

55

Unit Testing

Thursday, January 28, 16

Johnson's Law

If it is not tested it does not work

The more time between coding and testing

 More effort is needed to write tests
 More effort is needed to find bugs
 Fewer bugs are found
 Time is wasted working with buggy code
 Development time increases
 Quality decreases

Testing

56

Thursday, January 28, 16

Unit Testing

57

Tests individual code segments

Automated tests

Thursday, January 28, 16

Using print statements

Writing driver program in main

Writing small sample programs to run code

Running program and testing it be using it

What wrong with:

58

Thursday, January 28, 16

We have a QA Team, so why should I write tests?

59

Thursday, January 28, 16

First write the tests

Then write the code to be tested

Writing tests first saves time

 Makes you clear of the interface & functionality of the code

 Removes temptation to skip tests

When to Write Tests

60

Thursday, January 28, 16

Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test

61

Thursday, January 28, 16

Adapted with permission from “A Short Catalog of
Test Ideas” by Brian Marick,
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly

62

Thursday, January 28, 16

http://www.testing.com/writings.html
http://www.testing.com/writings.html

XUnit

63

Free frameworks for Unit testing

SUnit originally written by Kent Beck 1994

JUnit written by Kent Beck & Erich Gamma

Available at: http://www.junit.org/

Ports to many languages at:
 http://www.xprogramming.com/software.htm

Thursday, January 28, 16

XUnit Versions

64

3.x
Old version
Works with a versions of Java

4.x
Current version 4.8.1
Uses Annotations
Requires Java 5 or later

Thursday, January 28, 16

Simple Class to Test

65

public class Adder {
 private int base;
 public Adder(int value) {
 base = value;
 }

 public int add(int amount) {
 return base + amount;
 }
}

Thursday, January 28, 16

Creating Test Case in Eclipse

66

Thursday, January 28, 16

Fill in dialog window &
 create the test cases

Creating Test Case in Eclipse

67

Thursday, January 28, 16

Test Class

68

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestAdder {

 @Test
 public void testAdd() {
 Adder example = new Adder(3);
 assertEquals(4, example.add(1));
 }

 @Test
 public void testAddFail() {
 Adder example = new Adder(3);
 assertTrue(3 == example.add(1));
 }
}

Thursday, January 28, 16

Running the Tests

69

Thursday, January 28, 16

The result

70

Thursday, January 28, 16

assertArrayEquals()
assertTrue()
assertFalse()
assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertNull()
assertNotNull()
fail()

Assert Methods

71

Thursday, January 28, 16

For a complete list see http://kentbeck.github.com/junit/javadoc/latest/

Annotations

72

After
AfterClass
Before
BeforeClass
Ignore
Rule
Test

Thursday, January 28, 16

Using Before

73

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

public class TestAdder {
 Adder example;
 @Before
 public void setupExample() {
 example = new Adder(3);
 }

 @Test
 public void testAdd() {
 assertEquals(4, example.add(1));
 }
}

Thursday, January 28, 16

