
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2016

Doc 10 Memento, Command, Singleton, Proxy
Mar 3, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, March 3, 16

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Undo

Thursday, March 3, 16

3

Undo

Some examples

Counter

counter.increase(); //increase counter by 1
counter.decrease(); //decrease counter by 1

Thursday, March 3, 16

4

Undo

Some examples

Text editing

Replace "Should" with "Could" at start of 3rd sentence in 5 paragraph

Thursday, March 3, 16

Undo - Some Issues

5

Redo

Multiple undo

Thursday, March 3, 16

6

Memento

Thursday, March 3, 16

Memento

7

undo, rollbacks
Orginator
setMemento(Menmento m)
createMemento()
state

Memento
getState()
setState()
state

Caretaker
mementos

state=m->getState()

return new Memento(state)

Only originator:

Can access Memento’s get/set state methods
Create Memento

Store an object's internal state, so the object can be restored to this state later
without violating encapsulation

Thursday, March 3, 16

Example

8

package Examples;
class Memento{
 private Hashtable savedState = new Hashtable();

 protected Memento() {}; //Give some protection

 protected void setState(String stateName, Object stateValue) {
 savedState.put(stateName, stateValue);
 }

 protected Object getState(String stateName) {
 return savedState.get(stateName);
 }

 protected Object getState(String stateName, Object defaultValue) {
 if (savedState.containsKey(stateName))
 return savedState.get(stateName);
 else
 return defaultValue;
 }
}

Thursday, March 3, 16

Sample Originator

9

package Examples;
class ComplexObject {
 private String name;
 private int someData;
 private Vector objectAsState = new Vector();

 public Memento createMemento() {
 Memento currentState = new Memento();
 currentState.setState("name", name);
 currentState.setState("someData", new Integer(someData));
 currentState.setState("objectAsState", objectAsState.clone());
 return currentState;
 }

 public void restoreState(Memento oldState) {
 name = (String) oldState.getState("name", name);
 objectAsState = (Vector) oldState.getState("objectAsState");
 Integer data = (Integer) oldState.getState("someData");
 someData = data.intValue();
 }

Thursday, March 3, 16

10

Why not let the Originator save its old state?
class ComplexObject {
 private String name;
 private int someData;
 private Vector objectAsState = new Vector();
 private Stack history;

 public createMemento() {
 Memento currentState = new Memento();
 currentState.setState("name", name);
 currentState.setState("someData", new Integer(someData));
 currentState.setState("objectAsState", objectAsState.clone());
 history.push(currentState);
 }

 public void restoreState() {
 Memento oldState = history.pop();
 name = (String) oldState.getState("name", name);
 objectAsState = (Vector) oldState.getState("objectAsState");
 Integer data = (Integer) oldState.getState("someData");
 someData = data.intValue();
 }

Thursday, March 3, 16

11

Some Consequences

Expensive
Space

Narrow & Wide interfaces - Keep data hidden

class Originator {
 private String state;

 private class Memento {
 private String state;
 public Memento(String stateToSave)
 { state = stateToSave; }
 public String getState() { return state; }
 }

 public Object memento()
 { return new Memento(state);}

Class Memento {
 public:
 virtual ~Memento();
 private:
 friend class Originator;
 Memento();
 void setState(State*);
 State* GetState();

Thursday, March 3, 16

Using Clone to Save State

12

interface Memento extends Cloneable { }

class ComplexObject implements Memento {
 private String name;
 private int someData;

 public Memento createMemento() {
 Memento myState = null;
 try {
 myState = (Memento) this.clone();
 }
 catch (CloneNotSupportedException notReachable) {
 }
 return myState;
 }

 public void restoreState(Memento savedState) {
 ComplexObject myNewState = (ComplexObject)savedState;
 name = myNewState.name;
 someData = myNewState.someData;
 }
}

Thursday, March 3, 16

Copying Issues

13

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects

Thursday, March 3, 16

Shallow Copy Verse Deep Copy

14

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom
*

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

Original Objects

Deep Copy

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

aDoor
room1
room2
size 5

aRoom

aRoom

aChair

aTable

Deeper Copy

Thursday, March 3, 16

Cloning Issues - C++ Copy Constructors

15

class Door {
 public:
 Door();
 Door(const Door&);
 virtual Door* clone() const;

 virtual void Initialize(Room*, Room*);
 // stuff not shown
 private:
 Room* room1;
 Room* room2;
 }

Door::Door (const Door& other) //Copy constructor {
 room1 = other.room1;
 room2 = other.room2;
 }

Door* Door::clone() const {
 return new Door(*this);
 }

Thursday, March 3, 16

Cloning Issues - Java Clone

16

Shallow Copy
class Door implements Cloneable {
 private Room room1;
 private Room room2;

 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
}

Deep Copy
public class Door implements Cloneable {
 private Room room1;
 private Room room2;

 public Object clone() throws CloneNotSupportedException {
 Door thisCloned =(Door) super.clone();
 thisCloned.room1 = (Room)room1.clone();
 thisCloned.room2 = (Room)room2.clone();
 return thisCloned;
 }
}

Thursday, March 3, 16

What if Protocol

17

Make a copy of the Originator

Perform operations on the copy

Check if operations invalidate the internal state of copy

If so discard the copy & raise an exception

Else perform the operations on the Originator

When there are complex validations or
performing operations that make it difficult to restore later

Thursday, March 3, 16

Memento & Functional Programming

18

Immutable data
Data that can not change
Functional languages have primarily immutable data

If data can not change
Don’t need memento pattern

Thursday, March 3, 16

19

Command

Thursday, March 3, 16

Command

20

Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Example
Invoker be a menu
Client be a word processing program
Receiver a document
Action be save

Encapsulates a request as an object

Thursday, March 3, 16

Sample Command

21

public abstract class Command {
public abstract void execute();
public abstract void undo();

}

public class IncreaseCommand extends Command {
private Counter subject;

public IncreaseCommand(Counter toIncrease) {
subject = toIncrease;

public abstract void execute() { subject.increase() };

public abstract void undo() { subject.decrease() };
}

Thursday, March 3, 16

Sample Command - Text Editing

22

Requires more details

Text that is being edited
Location in text to changed
Replacement text

Undo requires

Text that is being edited
Location in text that was changed
Text that was replaced

Thursday, March 3, 16

When to Use the Command Pattern

23

Need action as a parameter (replaces callback functions)
Lambda's replace this use

Specify, queue, and execute requests at different times

Undo

Logging changes

High-level operations built on primitive operations

 A transaction encapsulates a set of changes to data

 Systems that use transaction often can use the command
pattern

Macro language

Thursday, March 3, 16

Consequences

24

Command decouples the object that invokes the operation from the one that knows how
to perform it

It is easy to add new commands, because you do not have to change existing classes

You can assemble commands into a composite object

Thursday, March 3, 16

Pluggable Commands

25

Can create one general Command using reflection

Don’t hard code the method called in the command

Pass the method to call an argument

Thursday, March 3, 16

Java Example of Pluggable Command

26

import java.util.*;
import java.lang.reflect.*;

public class Command
 {
 private Object receiver;
 private Method command;
 private Object[] arguments;

 public Command(Object receiver, Method command,
 Object[] arguments)
 {
 this.receiver = receiver;
 this.command = command;
 this.arguments = arguments;
 }

 public void execute() throws InvocationTargetException,
 IllegalAccessException
 {
 command.invoke(receiver, arguments);
 }
 }

Thursday, March 3, 16

Using the Pluggable Command

27

public class Test {
 public static void main(String[] args) throws Exception
 {
 Vector sample = new Vector();
 Class[] argumentTypes = { Object.class };
 Method add =
 Vector.class.getMethod("addElement", argumentTypes);
 Object[] arguments = { "cat" };

 Command test = new Command(sample, add, arguments);
 test.execute();
 System.out.println(sample.elementAt(0));
 }
 }

Output
cat

Thursday, March 3, 16

Pluggable Commands using Lambdas

28

public interface Command {
void execute();

}

public class PluggableCommand {
Command do;
Command undo;

public PluggableCommand(Command do, Command undo) {
this.do = do;
this.undo = undo;

}

public void execute() { do.execute(); }

public void undo() { undo.execute(); }

Thursday, March 3, 16

Pluggable Commands using Lambdas

29

final Counter example = new Counter();
PluggableCommand increase;

increase = new PluggableCommand(
() -> example.increase(),
() -> example.decrease());

increase.execute();

Note
Java's lambdas put restrictions on the variable example

Thursday, March 3, 16

Command Pattern & Lambda

30

Lambda’s can replace command objects for
Callbacks
Batch processing
Logging
Macro language

Thursday, March 3, 16

Functional Programming & Command

31

Simple cases - can just use function

But what if function needs
State
Receiver

Thursday, March 3, 16

Closures

32

function counter()
 n = 0
 return () -> n += 1
end

counter_a = counter()
counter_b = counter()
counter_a() # 1
counter_a() # 2
counter_a() # 3
counter_b() # 1

So functions can maintain state

Thursday, March 3, 16

With Multiple Functions

33

function counter(start = 0)
 n = start
 return () -> n += 1, () -> n = start
end

(plus_a, reset_a) = counter(10)
(plus_b, reset_b) = counter()

plus_a() # 11
plus_a() # 12
reset_a() # 10
plus_b() # 1

Thursday, March 3, 16

General Command

34

type Command
 execute::Function
 undo::Function
end

function execute(command::Command)
 command.execute()
end

function undo(command::Command)
 command.undo()
end

function counter(start)
 n = start
 return Command(()-> n += 1, ()-> n -= 1)
end

count = counter(5)
execute(count) # 6
undo(count) # 5

Thursday, March 3, 16

35

Command Processor Pattern

Thursday, March 3, 16

Command Processor Pattern

36

Command Processor manages the command objects

The command processor:

 Contains all command objects

 Schedules the execution of commands

 May store the commands for later unto

 May log the sequence of commands for testing purposes

 Uses singleton to insure only one instance

Thursday, March 3, 16

Structure

37

Client

Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Command

Processor

commandStack

doIt(command)
undoIt()

creates

transfer
command

performs

stores

Thursday, March 3, 16

Dynamics

38

Command
ProcessorClient

MakeBold
Command

Document

request

undo
request undoIt() undo()

delete()

restoreText()

getSelection()

makeBold()

do()
doIt()

create()

makeBold
command

Thursday, March 3, 16

Benefits

39

Flexibility in the way requests are activated

 Different user interface elements can generate the same kind of command object

 Allows the user to configure commands performed by a user interface element

Flexibility in the number and functionality of requests

 Adding new commands and providing for a macro language comes easy

Programming execution-related services

 Commands can be stored for later replay
 Commands can be logged
 Commands can be rolled back

Testability at application level

Concurrency

 Allows for the execution of commands in separate threads

Thursday, March 3, 16

Liabilities

40

Efficiency loss

Potential for an excessive number of command classes

 Try reducing the number of command classes by:

 Grouping commands around abstractions
 Unifying simple commands classes by passing the receiver object as a
parameter

Complexity

 How do commands get additional parameters they need?

Thursday, March 3, 16

41

Singleton

Thursday, March 3, 16

Warning

42

Simplest pattern
But has subtle issues particularly in Java

Most controversial pattern

Thursday, March 3, 16

43

Intent

Ensure a class only has one instance

Provide global point of access to single instance

Thursday, March 3, 16

Singleton

44

public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }

 public static Counter instance() {
 if (instance == null)
 instance = new Counter();
 return instance;
 }

 public int increase() {return ++count;}
}

One instance

Global access

Thursday, March 3, 16

This version does not work correctly all the time. See later slides

45

Some Uses

Java Security Manager

Logging a Server

Null Object

Thursday, March 3, 16

46

Globals are Evil

Thursday, March 3, 16

47

Why Singletons Are Controversial(Evil)

Singletons provide global access point for some service

Hidden dependencies

Is there a different design that does not need singletons

Pass a reference

Thursday, March 3, 16

48

Why Singletons Are Controversial(Evil)

Singletons allow you to limit creation of objects of a class

Should that be the responsibility of the class?

Class should do one thing

Use factory or builder to limit the creation

Thursday, March 3, 16

49

Why Singletons Are Controversial(Evil)

Singletons tightly couple you to the exact type of the singleton object

No polymorphism

Hard to subclass

Thursday, March 3, 16

50

Why Singletons Are Controversial(Evil)

Singletons carry state with them that last as long as the program lasts

Persistent state makes testing hard and error prone

Thursday, March 3, 16

51

Why Singletons Are Controversial(Evil)

A Singleton today is a multiple tomorrow

Singleton pattern makes it hard to change to allow multiple objects

Thursday, March 3, 16

52

Why Singletons Are Controversial(Evil)

In Java Singletons are a lie

More on this later

Thursday, March 3, 16

53

Singleton Implementation

Thursday, March 3, 16

Why Not Use This?

54

public class Counter {
 private static int count = 0;

 public static int increase() {return ++count;}
}

Thursday, March 3, 16

Why Not Use This?

55

public class Counter {
 private int count = 0;
 private Counter() { }

 public static Counter instance = new Counter();

 public int increase() {return ++count;}
}

Thursday, March 3, 16

Very subtle the error here

Two Useful Features

56

Lazy
Only created when needed

Thread safe

Thursday, March 3, 16

Recommended Implementation

57

public class Counter {
 private int count = 0;
 private Counter() { }

 private static class SingletonHolder {
 private final static Counter INSTANCE = new Counter();

 }

 public static Counter instance() {
 return SingletonHolder.INSTANCE;
 }

 public int increase() {return ++count;}
}

Thursday, March 3, 16

Implementation due to Bill Pugh, found in Wikipedia, http://en.wikipedia.org/wiki/Singleton_pattern. It is thread-safe, lazy and
works with all know versions of Java

Correct but not Lazy

58

public class Counter {
 private int count = 0;
 protected Counter() { }

 private final static Counter INSTANCE = new
Counter();

 public static Counter instance() {
 return INSTANCE;
 }

 public int increase() {return ++count;}
}

Thursday, March 3, 16

Lazy, Thread safe with Overhead

59

public class Counter {
 private int count = 0;
 private static Counter instance;
 private Counter() { }

 public static synchronized Counter instance() {
 if (instance == null)
 instance = new Counter();
 return instance();
 }

 public int increase() {return ++count;}
}

Thursday, March 3, 16

Java Templates & Singleton

60

public class TemplateSingleton<Type> {
 Type foo;

 public static TemplateSingleton<Type> instance =
new TemplateSingleton<Type>();

}

Does not compile

Thursday, March 3, 16

61

When is a Singleton not a Singleton?When is a Singleton not a Singleton?

Thursday, March 3, 16

When Java Garbage Collects Classes

62

Turn off garbage collection of classes (-Xnoclassgc)

Make sure there is always a reference to the class/instance

Singleton class can be garbage collected
Singleton loses any value it had

Solution

Thursday, March 3, 16

When Multiple Java Class Loaders are Used

63

When loaded by two different class loaders there will be two
versions of the class

Some servlet engines use different class loader for each servlet

Using custom class loaders can cause this

Thursday, March 3, 16

Purposely Reloading a Java Class

64

Servlet engines can force a class to be reloaded

Thursday, March 3, 16

Serialize and Deserialize Singleton Object

65

One way to serialize a Java object is using ObjectOutputStream

Ruby Marshal.dump() will not marshal a singleton

Serialize the singleton
Deserialize the singleton
You now have two copies

Thursday, March 3, 16

66

Proxy

Thursday, March 3, 16

67

Proxy (Surrogate)

a person authorized to act on behalf of another

Thursday, March 3, 16

68

AbstractSubject
request()

RealSubject
request()

Proxy

request() realSubject->request()
realSubject

Client

class Proxy {
 AbstractSubject realSubject;

 public Foo service(Bar x) {
 return realSubject(x);
 }

Thursday, March 3, 16

69

Why do it?

Thursday, March 3, 16

70

Remote Proxy
Machine A

HelloClient

Machine B

HelloServer

Server
Proxy Client

Proxy

SayHello()
SayHello() SayHello()

Hello
Hello

HelloHelloHello

String server = getHelloHostAddress(args);
Hello proxy = (Hello) Naming.lookup(server);
String message = proxy.sayHello();
System.out.println(message);

Thursday, March 3, 16

71

class Proxy {
 AbstractSubject realSubject;

 public Foo service(Bar x) {
 some preprocessing
 result = realSubject(x);
 some postprocessing
 }

More General Proxy

Thursday, March 3, 16

72

Creates/accesses expensive objects on demand

O-R Mapping Layers

Virtual Proxy

Thursday, March 3, 16

73

ArrayList notSafe = new ArrayList();
List threadSafe = Collections.synchronizedList(notSafe);

static class SynchronizedList {
 List list;
 public Object get(int index) {
 synchronized(mutex) {return list.get(index);}
 }

Java's Synchronized List

Thursday, March 3, 16

74

ArrayList notSafe = new ArrayList();
List noChange = Collections.unmodifiableList(notSafe);

static class UnmodifiableList {
 List list;
 public Object get(int index) { return list.get(index);}

 public Object set(int index, Object element) {
 throw new UnsupportedOperationException();
 }

Java's Unmodifiable List

Thursday, March 3, 16

75

ArrayList notSafe = new ArrayList();
List noChange = Collections.unmodifiableList(notSafe);
List threadSafe = Collections.synchronizedList(noChange);

notSafenoChangethreadSafe

Proxy or Decorator?

Thursday, March 3, 16

76

"Decorators can have similar implementations as proxies"

Proxy controls access to an object

Decorator adds one or more responsibilities to an object

Proxy verses Decorator

Thursday, March 3, 16

