
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2016

Doc 14 Composite, Mediator, Flyweight
April 7, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, April 7, 16

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

2

Composite

Thursday, April 7, 16

Composite Motivation

3

How does the window hold and deal with the different items it has to manage?

Widgets are different that WidgetContainers

Thursday, April 7, 16

Bad News

4

class Window {
 Buttons[] myButtons;
 Menus[] myMenus;
 TextAreas[] myTextAreas;
 WidgetContainer[] myContainers;

 public void update() {
 if (myButtons != null)
 for (int k = 0; k < myButtons.length(); k++)
 myButtons[k].refresh();
 if (myMenus != null)
 for (int k = 0; k < myMenus.length(); k++)
 myMenus[k].display();
 if (myTextAreas != null)
 for (int k = 0; k < myButtons.length(); k++)
 myTextAreas[k].refresh();
 if (myContainers != null)
 for (int k = 0; k < myContainers.length(); k++)
 myContainers[k].updateElements();
 etc.
 }
 public void fooOperation(){
 if (myButtons != null)
 etc.

Thursday, April 7, 16

An Improvement

5

class Window {
 GUIWidgets[] myWidgets;
 WidgetContainer[] myContainers;

 public void update(){
 if (myWidgets != null)
 for (int k = 0; k < myWidgets.length(); k++)
 myWidgets[k].update();
 if (myContainers != null)
 for (int k = 0; k < myContainers.length(); k++)
 myContainers[k].updateElements();
 etc.
 }
}

Thursday, April 7, 16

Composite Pattern

6

Component

WidgetOperation()

Button Menu TextArea WidgetContainer

components

ContainerOperation()

Thursday, April 7, 16

Composite Pattern

7

Component implements default behavior for widgets when possible

Button, Menu, etc overrides Component methods when needed

WidgetContainer will have to overrides all widgetOperations

class WidgetContainer {
 Component[] myComponents;

 public void update() {
 if (myComponents != null)
 for (int k = 0; k < myComponents.length(); k++)
 myComponents[k].update();
 }
}

Thursday, April 7, 16

Issue - WidgetContainer Operations

8

Should the WidgetContainer operations be declared in Component?

Pro - Transparency
Declaring them in the Component gives all subclasses the same interface

All subclasses can be treated alike. (?)

Con - Safety
Declaring them in WidgetContainer is safer

Adding or removing widgets to non-WidgetContainers is an error

One out is to check the type of the object before using a WidgetContainer operation

Thursday, April 7, 16

Issue - Parent References

9

class WidgetContainer
 {
 Component[] myComponents;

 public void update() {
 if (myComponents != null)
 for (int k = 0; k < myComponents.length(); k++)
 myComponents[k].update();
 }

 public add(Component aComponent) {
 myComponents.append(aComponent);
 aComponent.setParent(this);
 }
}

class Button extends Component {
 private Component parent;
 public void setParent(Component myParent) {
 parent = myParent;
 }

 etc.

Thursday, April 7, 16

More Issues

10

Should Component implement a list of Components?

 The button etc. will have a useless data member

Child ordering is important in some cases

Who should delete components?

Thursday, April 7, 16

Applicability

11

Use Composite pattern when you want

 To represent part-whole hierarchies of objects

 Clients to be able to ignore the difference between compositions of objects and
individual objects

Thursday, April 7, 16

12

Mediator

Thursday, April 7, 16

13

Mediator
A mediator controls and coordinates the interactions of a group of objects

A

B

C

DE

A

B

C

DE

Mediator

Thursday, April 7, 16

14

Structure

Mediator

ConcreteMediator

Colleague

ConcreteColleague1 ConcreteColleague1

Thursday, April 7, 16

Participants

15

Mediator

Defines an interface for communicating with Colleague objects

ConcreteMediator

Implements cooperative behavior by coordinating Colleague objects

Knows and maintains its colleagues

Colleague classes

Each Colleague class knows its Mediator object

Each colleague communicates with its mediator whenever it
would have otherwise communicated with another colleague

Thursday, April 7, 16

Motivating Example - Dialog Boxes

16

aClient
director

aListBox
director

aButton
director

anEntryField
director

aFontDialogDirector

Thursday, April 7, 16

17

How does this differ from a God Class?

Thursday, April 7, 16

18

When to use the Mediator Pattern

When a set of objects communicate in a well-defined but
complex ways

When reusing an object is difficult because it refers to and
communicates with many other objects

When a behavior that's distributed between several classes
should be customizable without a lot of subclassing

Thursday, April 7, 16

Classic Mediator Example

19

Thursday, April 7, 16

Simpler Example

20

Thursday, April 7, 16

Non Mediator Solution

21

class OKButton extends Button {
TextField password;
TextField username;
Database userData;
Model application;

protected void processEvent(AWTEvent e) {
if (!e.isButtonPressed()) return;
e.consume();
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

Thursday, April 7, 16

http://java.sun.com/javase/6/docs/api/java/awt/AWTEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/AWTEvent.html

Mediator Solution

22

class LoginDialog extends Panel {
TextField password;
TextField username;
Database userData;
Button ok, cancel;

protected void actionPerformed(ActionEvent e) {
if (!e.isButtonPressed() or e.getSource() != ok) return;
if (password.getText() = "") {

notifyUser("Must enter password");
return;

}
if (username.getText() = "") {

notifyUser("Must enter user name");
return;

}
if (!userData.validUser(password.getText(), username.getTest()))

notifyUser("Invalid username & password");
return;

}

A

B

C

DE

Mediator

Thursday, April 7, 16

http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html#actionPerformed(java.awt.event.ActionEvent)
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html#actionPerformed(java.awt.event.ActionEvent)
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html

What is Different?

23

Non Mediator Example

Special Button class
OK button coupled to text fields

Mediator Example

No specialButton class
LoginDialog coupled to text fields

Logic moved from button class to LoginDialog

Thursday, April 7, 16

But

24

Java's event mechanism promotes mediator solution

Thursday, April 7, 16

25

Flyweight

Thursday, April 7, 16

Flyweight

26

Use sharing to support large number of fine-
grained objects efficiently

Thursday, April 7, 16

Text Example

27

A document has many instances of the character 'a'

Character has
Font
width
Height
Ascenders
Descenders
Where it is in the document

Most of these are the same for all instances of 'a'

Use one object to represent all instances of 'a'

Thursday, April 7, 16

Java String Example

28

 public void testInterned() {
 String a1 = "catrat";
 String a2 = "cat";
 assertFalse(a1 == (a2+ "rat"));

 String a3 = (a2 + "rat").intern();
 assertTrue(a1 == a3);
 String a4 = "cat" + "rat";
 assertTrue(a1 == a4);
 assertTrue(a3 == a4);
 }

public String intern()
 Returns a canonical representation for the string object.
 A pool of strings, initially empty, is maintained privately by the class String.

Thursday, April 7, 16

Intrinsic State

29

Information that is independent from the object's context

The information that can be shared among many objects

So can be stored inside of the flyweight

Thursday, April 7, 16

Extrinsic State

30

Information that is dependent on the object's context

The information that can not be shared among objects

So has to be stored outside of the flyweight

Thursday, April 7, 16

Structure

31

Client

FlyweightFactory

getFlyweight(key)

Flyweight
operation(extrinsicState)

ConcreteFlyweight

intrinsicState
operation(extrinsicState)

UnsharedConcreteFlyweight

allState
operation(extrinsicState)

flyweight

if (flywight[key] exists)
! return existing flyweight
else
! create new flyweight
! add it to flyweight pool
! return new flyweight

Thursday, April 7, 16

The Hard Part

32

Separating state from the flyweight

How easy is it to identify and remove extrinsic state

Will it save space to remove extrinsic state

Thursday, April 7, 16

Example Text

33

Run Arrays

aaaaabaaaaaaaaaaaaaaaaaaaa

a b a
5 1 20

Thursday, April 7, 16

Text Example

34

"A Cat in the hat came back the very next day"

Lexi Document Editor

Uses character objects with font information
(To support graphic elements)

Use run array to store font information (extrinsic state)

Normal Bold Normal
22 4 18

Thursday, April 7, 16

