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Clustering
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Unsupervised machine learning 

Algorithm “looks” for structure in the data 

Clustering  
Groups data that is similar to each other in some way



Uses for Clustering
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Bioinformatics 
Sequence analysis 

Group sequences into gene families 
Human genetic clustering 

Infer ancestral background 

Market research 
Partition consumers into market segments based on surveys & test panels 

Image segmentation 
Divide image into regions for border detection or object recongnition 



Recommender Systems
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Examples 
Last.fm 
Pandora Radio 
Netflix recommendations 
Amazon recommendations 
Facebook friend recommendations 

Machine Learning algorithms used 
Bayesian Classifiers 
Cluster analysis 
Decision trees 
Artificial neural networks 



Clustering
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Clustering algorithms group data based on distance

What is distance? 

Normalizing data affects distance



Distance

 6

Distances.jl Euclidean distance 
Squared Euclidean distance 
Cityblock distance 
Jaccard distance 
Rogers-Tanimoto distance 
Chebyshev distance 
Minkowski distance 
Hamming distance 
Cosine distance 
Correlation distance 
Chi-square distance 
Kullback-Leibler divergence 
Rényi divergence 
Jensen-Shannon divergence 
Mahalanobis distance 
Squared Mahalanobis distance 
Bhattacharyya distance 
Hellinger distance
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euclidean(x, y) =  sqrt(sum((x - y) .^ 2)) 
euclidean([2,0],[0,2]) == 2.83 

cityblock(x, y) = sum(abs(x - y)) 
cityblock([2,0],[0,2]) == 4 

hamming(x, y) = sum(x .!= y) 
hamming([2,0],[0,2]) == 2 
hamming([9,0],[0,2]) == 2 

cosine_dist(x,y) = cos(x,y) 
cosine_dist([2.0,0.0], [0.0,2.0])) == 1 
cosine_dist([2.0,0.0], [10.0,0.0])) == 0 

jaccard(x, y) = 1 - sum(min(x, y)) / sum(max(x, y)) 
jaccard([2,0],[0,2])  == 1

using Distances



Normalization
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Clustering relies on distance between data points which scale can affect 

Max-min

Sigmoidal normalization

Mean-standard deviation

Softmax



Max-min
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min_max_norm(x) = (x - minimum(x)) / (maximum(x) - minimum(x))

maps data -> [0, 1] 
Cheap to compute 
Outliers compress the data
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Mean-standard deviation (Z-score)
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mean_std_norm(x) = (x - mean(x)) / std(x)

Unbounded, but mainly in [-3, 3] 
Contains negative numbers 
Has outlier issues
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Sigmoidal Normalization
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sigmoidal_norm(x) = 1 ./ (1 + exp(-x))

Range (0, 1) 
Not very useful as given in text



Logistic Function
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logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))
c = 0 
k = 1, 0.5, 0.25, 0.1

k=1

k=0.1

k=0.25
Range (0, 1) 

Need to select k & c

Commonly used in neural networks 

Bases of Elo ranking system



Logistic Function
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logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))
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Softmax Normalization
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softmax_norm(x) = 1 ./(1 + exp(-(x - mean(x))/std(x)))

Range (0, 1) 
mean -> 0.5 
Near linear within standard deviation of mean 
Keeps outliers, but reduces their influence
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Text Normalization
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Extracting text from xml, json 

tokenizing 

Punctuation & non text characters () 

Non relavent word 
the, and, this, ... 

Root (stem) words 
like, liked



Stem Words
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worked 
working  

worker  
workers 

sleep 
sleeping 
slept 



Text & Distance - Jaccard Distance
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Let A and B be sets 

The Jaccard index or Jaccard similarty coefficient is

Range [0, 1] 

If A == B then J(A,B) = 1

Jaccard Distance for sets 

dj(A, B) = 1 - J(A, B)



Example
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a = StringDocument("Music is the food of love") 
b = StringDocument("War is the locomotive of history") 
c = StringDocument("It's lovely that you're musical")

jaccard_dist(a,b) == 0.667 
jaccard_dist(a,c) == 1.00



Example Revisited

 19

a = StringDocument("Music is the food of love") 
b = StringDocument("War is the locomotive of history") 
c = StringDocument("It's lovely that you're musical") 

normalize_text!(a) 
normalize_text!(b) 
normalize_text!(c) 

jaccard_dist(a,b) == 1.00 
jaccard_dist(a,c) ==  0.333



Text as Vectors - Term Frequency
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Find all unique words in your text - say n words 

Map each word to a number from 1 - n 

That number becomes the words location in a vector 

Count the number of time the word appears  

Place that number in the vectors location



Example
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"Music is the food of love" 
"War is the locomotive of history" 
"It's lovely that you're musical"

"music food love" 
"war locomotive histori" 
"love  music"

 "food"            = 1      
 "histori"         =  2   
 "locomotive" =  3 
 "love"            = 4      
 "music"         = 5    
 "war"            =  6      

"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love  music"  -> [0, 0, 0, 1, 1, 0]



Cosine Distance
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cos(0) = 1.0 

cos(deg2rad(90)) = 6.12e-17 

cos(deg2rad(180)) = -1.00



Cosine Distance
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"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love  music"  -> [0, 0, 0, 1, 1, 0]

"music food love" verses "war locomotive histori" 

 cosine_dist([1, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]) = 1.00 

"music food love" verses "love  music" 

 cosine_dist([1, 0, 0, 1, 1, 0]), [0, 0, 0, 1, 1, 0]) = 0.184



Types of Clustering
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Center-based Cluster Algorithms 
k-nearest neighbor 
k-means 
k-medoids 
Affinity propagation

Density clusters 
DBSCAN



K-Clustering - Basic Idea
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Pick k points to be start of each cluster 

1. Add each data point to the nearest cluster 

2. Readjust the k points for each cluster 

Repeat 1 & 2 until clusters are stable or reach given number of iterations



K-means
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Select k points m11, m21, ... , mk1 

For each data point x assign it to the mean that it is closest to form k clusters  
Use square of the (Euclidiean) distance 

For each cluster compute the mean of that cluster 
Get new means m12, m22, ... , mk2  

If points changed clusters repeat



Example
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K-mediods
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Differs from K-means in two ways 

Centers of each cluster is data point nearest the mean point 

Uses distance matrix so can use any definition of distance



Sample Dataset
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xclara = dataset("cluster", "xclara"



K-Means k= 3

 30



Issues
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Picking initial means 

Picking number of clusters 

Measuring how good the clusters are 

Normalization of data 

What is distance



Varying k
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2 4 5

6 6 6



k-Means & Clusters with no center
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k-Means & Clusters with no center
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from sklearn.datasets import make_moons 
X, y = make_moons(200, noise=.05, random_state=0)

plt.scatter(X[:, 0], X[:, 1]);



k-Means & Clusters with no center
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from sklearn.cluster import KMeans 
import matplotlib.pyplot as plt 

labels = KMeans(2, random_state=0).fit_predict(X) 
plt.scatter(X[:, 0], X[:, 1], c=labels, 
            s=50, cmap='viridis');



k-clustering Algorithms
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Assume that  

Each cluster is centered around a point 

Clusters are convex 

You know how many clusters there should be



SpectralClustering
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from sklearn.cluster import SpectralClustering 
model = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', 
                           assign_labels='kmeans') 
labels = model.fit_predict(X) 
plt.scatter(X[:, 0], X[:, 1], c=labels, 
            s=50, cmap='viridis');

Transforms data then uses K-menas
useful when the structure of the individual clusters is highly non-convex



Picking initial Seeds for Clusters
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Clustering algorithms try to find the best clusters 

But can get stuck in local extrema



DBSCAN
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Developed in 1996 
One of most commonly used clustering algorithms 
Most cited in scientific literature

Density-based spatial clustering of applications with noise 

Groups points together that are closely packed together



Terms
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Parameters  ϵ- distance 
     minPts

p is a core point if 

There are minPts within distance ϵ of p including p 

Directly reachable points 

All points within distance ϵ of a core point p are directly reachable from p 
  
q is reachable from p if 

There is a path p1, ..., pn with p1 = p and pn = q, 
 pi+1 is directly reachable from pi 

Outlier 
Points not reachable from any other points 

A core point and all points reachable from it form a cluster



Example - minPts = 4

 41



DBSCAN Issues
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ϵ & minPts determine the clusters 

No need to determine number of clusters 

Robust to outliers 

Can be implemented with runtime O(n log n) 

Can not handle data with varying densities 

High demensional data causes problems with selecting  ϵ & minPts



DBSCAN with varying eps
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eps = 6 
minpts = 10

eps = 7 
minpts = 10

eps = 8 
minpts = 10



DBSCAN & Non centered clusters
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Curse of Dimensionality
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As dimensions rise every point tends to become equally far from every other point



Reducing Dimensions
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Some dimensions in a data set have less variation that others 

So contribute less 

These dimensions may not be the ones given in the data
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PCA - Principle Component Analysis
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Used to reduce the dimensionality of data 

Changes the dimension of the data so 

First dimension has the greatest variance 
Second dimension has second greatest variance 
... 

Can then select first K dimensions to work with 

Data is transformed into different coordinate system



Example
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http://setosa.io/ev/principal-component-analysis/



Example - Generate Data
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import numpy as np 
from matplotlib import pyplot as plt 
plt.figure(figsize=(20,6))  
rng = np.random.RandomState(1) 
X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T 
plt.scatter(X[:, 0], X[:, 1]) 
plt.axis('equal');



Example - Compute PCA
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from sklearn.decomposition import PCA 
pca = PCA(n_components=2) 
pca.fit(X)

print(pca.components_) [[-0.94446029 -0.32862557]
 [-0.32862557  0.94446029]]

Vector of two Components

print(pca.explained_variance_) [0.7625315 0.0184779]

How much variation on each axis

print(pca.mean_) [ 0.03351168 -0.00408072]

Center of Data



New Axis
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If we project all data on the long axis  
1 dimensional data 
76% of variation
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[0.51123202 0.09867101]How much variation on each axis



Drawing Vector
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def draw_vector(v0, v1, ax=None): 
    ax = ax or plt.gca() 
    arrowprops=dict(arrowstyle='->', 
                    linewidth=2, 
                    shrinkA=0, shrinkB=0) 
    ax.annotate('', v1, v0, arrowprops=arrowprops) 

# plot data 
plt.figure(figsize=(20,6))  
plt.scatter(X[:, 0], X[:, 1], alpha=0.2) 
for length, vector in zip(pca.explained_variance_, pca.components_): 
    v = vector * 3 * np.sqrt(length) 
    draw_vector(pca.mean_, pca.mean_ + v) 
plt.axis('equal');



Creating one Moon
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from sklearn.decomposition import PCA 
pca_moon = PCA(n_components=2) 
pca_moon.fit(moon) 
print(pca_moon.explained_variance_)

from sklearn.datasets import make_moons 
X, y = make_moons(200, noise=.05, random_state=0) 
moon = X[y == 0] 
plt.figure(figsize=(20,6)) 
plt.scatter(moon[:, 0], moon[:, 1]);


