
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2019
Doc 12 Clustering

Mar 11, 2019

Copyright ©, All rights reserved. 2019 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Clustering

 2

Unsupervised machine learning

Algorithm “looks” for structure in the data

Clustering
Groups data that is similar to each other in some way

Uses for Clustering

 3

Bioinformatics
Sequence analysis

Group sequences into gene families
Human genetic clustering

Infer ancestral background

Market research
Partition consumers into market segments based on surveys & test panels

Image segmentation
Divide image into regions for border detection or object recongnition

Recommender Systems

 4

Examples
Last.fm
Pandora Radio
Netflix recommendations
Amazon recommendations
Facebook friend recommendations

Machine Learning algorithms used
Bayesian Classifiers
Cluster analysis
Decision trees
Artificial neural networks

Clustering

 5

Clustering algorithms group data based on distance

What is distance?

Normalizing data affects distance

Distance

 6

Distances.jl Euclidean distance
Squared Euclidean distance
Cityblock distance
Jaccard distance
Rogers-Tanimoto distance
Chebyshev distance
Minkowski distance
Hamming distance
Cosine distance
Correlation distance
Chi-square distance
Kullback-Leibler divergence
Rényi divergence
Jensen-Shannon divergence
Mahalanobis distance
Squared Mahalanobis distance
Bhattacharyya distance
Hellinger distance

 7

euclidean(x, y) = sqrt(sum((x - y) .^ 2))
euclidean([2,0],[0,2]) == 2.83

cityblock(x, y) = sum(abs(x - y))
cityblock([2,0],[0,2]) == 4

hamming(x, y) = sum(x .!= y)
hamming([2,0],[0,2]) == 2
hamming([9,0],[0,2]) == 2

cosine_dist(x,y) = cos(x,y)
cosine_dist([2.0,0.0], [0.0,2.0])) == 1
cosine_dist([2.0,0.0], [10.0,0.0])) == 0

jaccard(x, y) = 1 - sum(min(x, y)) / sum(max(x, y))
jaccard([2,0],[0,2]) == 1

using Distances

Normalization

 8

Clustering relies on distance between data points which scale can affect

Max-min

Sigmoidal normalization

Mean-standard deviation

Softmax

Max-min

 9

min_max_norm(x) = (x - minimum(x)) / (maximum(x) - minimum(x))

maps data -> [0, 1]
Cheap to compute
Outliers compress the data

1
2
3
4
9
20

 0.0
 0.0526316
 0.105263
 0.157895
 0.421053
 1.0

1
2
3
4
9
20
2000

 0.0
 0.00050025
 0.0010005
 0.00150075
 0.004002
 0.00950475
 1.0

Mean-standard deviation (Z-score)

 10

mean_std_norm(x) = (x - mean(x)) / std(x)

Unbounded, but mainly in [-3, 3]
Contains negative numbers
Has outlier issues

1
2
3
4
9
20

 -0.766406
 -0.62706
 -0.487713
 -0.348367
 0.348367
 1.88118

1
2
3
4
9
20
2000

 -0.385249
 -0.383922
 -0.382595
 -0.381268
 -0.374632
 -0.360034
 2.2677

Sigmoidal Normalization

 11

1
2
3
4
9
20

 0.731059
 0.880797
 0.952574
 0.982014
 0.999877
 1.0

1
2
3
4
9
20
2000

 0.731059
 0.880797
 0.952574
 0.982014
 0.999877
 1.0
 1.0

sigmoidal_norm(x) = 1 ./ (1 + exp(-x))

Range (0, 1)
Not very useful as given in text

Logistic Function

 12

logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))
c = 0
k = 1, 0.5, 0.25, 0.1

k=1

k=0.1

k=0.25
Range (0, 1)

Need to select k & c

Commonly used in neural networks

Bases of Elo ranking system

Logistic Function

 13

logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))

1
2
3
4
9
20

 0.731059
 0.880797
 0.952574
 0.982014
 0.999877
 1.0

1
2
3
4
9
20
2000

 0.731059
 0.880797
 0.952574
 0.982014
 0.999877
 1.0
 1.0

k= 1, c= 0

 0.622459
 0.731059
 0.817574
 0.880797
 0.989013
 0.999955

k= 0.5, c= 0

 0.622459
 0.731059
 0.817574
 0.880797
 0.989013
 0.999955
 1.0

 0.549834
 0.598688
 0.645656
 0.689974
 0.858149
 0.982014
 1.0

 0.167982
 0.197816
 0.231475
 0.268941
 0.5
 0.90025
 1.0

 0.549834
 0.598688
 0.645656
 0.689974
 0.858149
 0.982014

k= 0.2, c= 0

 0.167982
 0.197816
 0.231475
 0.268941
 0.5
 0.90025

k= 0.2, c= 9

Softmax Normalization

 14

softmax_norm(x) = 1 ./(1 + exp(-(x - mean(x))/std(x)))

Range (0, 1)
mean -> 0.5
Near linear within standard deviation of mean
Keeps outliers, but reduces their influence

1
2
3
4
9
20

 0.317257
 0.348178
 0.380432
 0.413779
 0.586221
 0.867747

1
2
3
4
9
20
2000

 0.404861
 0.405181
 0.405501
 0.405821
 0.407422
 0.410951
 0.906166

Text Normalization

 15

Extracting text from xml, json

tokenizing

Punctuation & non text characters ()

Non relavent word
the, and, this, ...

Root (stem) words
like, liked

Stem Words

 16

worked
working

worker
workers

sleep
sleeping
slept

Text & Distance - Jaccard Distance

 17

Let A and B be sets

The Jaccard index or Jaccard similarty coefficient is

Range [0, 1]

If A == B then J(A,B) = 1

Jaccard Distance for sets

dj(A, B) = 1 - J(A, B)

Example

 18

a = StringDocument("Music is the food of love")
b = StringDocument("War is the locomotive of history")
c = StringDocument("It's lovely that you're musical")

jaccard_dist(a,b) == 0.667
jaccard_dist(a,c) == 1.00

Example Revisited

 19

a = StringDocument("Music is the food of love")
b = StringDocument("War is the locomotive of history")
c = StringDocument("It's lovely that you're musical")

normalize_text!(a)
normalize_text!(b)
normalize_text!(c)

jaccard_dist(a,b) == 1.00
jaccard_dist(a,c) == 0.333

Text as Vectors - Term Frequency

 20

Find all unique words in your text - say n words

Map each word to a number from 1 - n

That number becomes the words location in a vector

Count the number of time the word appears

Place that number in the vectors location

Example

 21

"Music is the food of love"
"War is the locomotive of history"
"It's lovely that you're musical"

"music food love"
"war locomotive histori"
"love music"

 "food" = 1
 "histori" = 2
 "locomotive" = 3
 "love" = 4
 "music" = 5
 "war" = 6

"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love music" -> [0, 0, 0, 1, 1, 0]

Cosine Distance

 22

cos(0) = 1.0

cos(deg2rad(90)) = 6.12e-17

cos(deg2rad(180)) = -1.00

Cosine Distance

 23

"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love music" -> [0, 0, 0, 1, 1, 0]

"music food love" verses "war locomotive histori"

 cosine_dist([1, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]) = 1.00

"music food love" verses "love music"

 cosine_dist([1, 0, 0, 1, 1, 0]), [0, 0, 0, 1, 1, 0]) = 0.184

Types of Clustering

 24

Center-based Cluster Algorithms
k-nearest neighbor
k-means
k-medoids
Affinity propagation

Density clusters
DBSCAN

K-Clustering - Basic Idea

 25

Pick k points to be start of each cluster

1. Add each data point to the nearest cluster

2. Readjust the k points for each cluster

Repeat 1 & 2 until clusters are stable or reach given number of iterations

K-means

 26

Select k points m11, m21, ... , mk1

For each data point x assign it to the mean that it is closest to form k clusters
Use square of the (Euclidiean) distance

For each cluster compute the mean of that cluster
Get new means m12, m22, ... , mk2

If points changed clusters repeat

Example

 27

K-mediods

 28

Differs from K-means in two ways

Centers of each cluster is data point nearest the mean point

Uses distance matrix so can use any definition of distance

Sample Dataset

 29

xclara = dataset("cluster", "xclara"

K-Means k= 3

 30

Issues

 31

Picking initial means

Picking number of clusters

Measuring how good the clusters are

Normalization of data

What is distance

Varying k

 32

2 4 5

6 6 6

k-Means & Clusters with no center

 33

k-Means & Clusters with no center

 34

from sklearn.datasets import make_moons
X, y = make_moons(200, noise=.05, random_state=0)

plt.scatter(X[:, 0], X[:, 1]);

k-Means & Clusters with no center

 35

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

labels = KMeans(2, random_state=0).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,
 s=50, cmap='viridis');

k-clustering Algorithms

 36

Assume that

Each cluster is centered around a point

Clusters are convex

You know how many clusters there should be

SpectralClustering

 37

from sklearn.cluster import SpectralClustering
model = SpectralClustering(n_clusters=2, affinity='nearest_neighbors',
 assign_labels='kmeans')
labels = model.fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,
 s=50, cmap='viridis');

Transforms data then uses K-menas
useful when the structure of the individual clusters is highly non-convex

Picking initial Seeds for Clusters

 38

Clustering algorithms try to find the best clusters

But can get stuck in local extrema

DBSCAN

 39

Developed in 1996
One of most commonly used clustering algorithms
Most cited in scientific literature

Density-based spatial clustering of applications with noise

Groups points together that are closely packed together

Terms

 40

Parameters ϵ- distance
 minPts

p is a core point if

There are minPts within distance ϵ of p including p

Directly reachable points

All points within distance ϵ of a core point p are directly reachable from p

q is reachable from p if

There is a path p1, ..., pn with p1 = p and pn = q,
 pi+1 is directly reachable from pi

Outlier
Points not reachable from any other points

A core point and all points reachable from it form a cluster

Example - minPts = 4

 41

DBSCAN Issues

 42

ϵ & minPts determine the clusters

No need to determine number of clusters

Robust to outliers

Can be implemented with runtime O(n log n)

Can not handle data with varying densities

High demensional data causes problems with selecting ϵ & minPts

DBSCAN with varying eps

 43

eps = 6
minpts = 10

eps = 7
minpts = 10

eps = 8
minpts = 10

DBSCAN & Non centered clusters

 44

Curse of Dimensionality

 45

As dimensions rise every point tends to become equally far from every other point

Reducing Dimensions

 46

Some dimensions in a data set have less variation that others

So contribute less

These dimensions may not be the ones given in the data

 47

PCA - Principle Component Analysis

 48

Used to reduce the dimensionality of data

Changes the dimension of the data so

First dimension has the greatest variance
Second dimension has second greatest variance
...

Can then select first K dimensions to work with

Data is transformed into different coordinate system

Example

 49

http://setosa.io/ev/principal-component-analysis/

Example - Generate Data

 50

import numpy as np
from matplotlib import pyplot as plt
plt.figure(figsize=(20,6))
rng = np.random.RandomState(1)
X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T
plt.scatter(X[:, 0], X[:, 1])
plt.axis('equal');

Example - Compute PCA

 51

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)

print(pca.components_) [[-0.94446029 -0.32862557]
 [-0.32862557 0.94446029]]

Vector of two Components

print(pca.explained_variance_) [0.7625315 0.0184779]

How much variation on each axis

print(pca.mean_) [0.03351168 -0.00408072]

Center of Data

New Axis

 52

If we project all data on the long axis
1 dimensional data
76% of variation

 53

[0.51123202 0.09867101]How much variation on each axis

Drawing Vector

 54

def draw_vector(v0, v1, ax=None):
 ax = ax or plt.gca()
 arrowprops=dict(arrowstyle='->',
 linewidth=2,
 shrinkA=0, shrinkB=0)
 ax.annotate('', v1, v0, arrowprops=arrowprops)

plot data
plt.figure(figsize=(20,6))
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
for length, vector in zip(pca.explained_variance_, pca.components_):
 v = vector * 3 * np.sqrt(length)
 draw_vector(pca.mean_, pca.mean_ + v)
plt.axis('equal');

Creating one Moon

 55

from sklearn.decomposition import PCA
pca_moon = PCA(n_components=2)
pca_moon.fit(moon)
print(pca_moon.explained_variance_)

from sklearn.datasets import make_moons
X, y = make_moons(200, noise=.05, random_state=0)
moon = X[y == 0]
plt.figure(figsize=(20,6))
plt.scatter(moon[:, 0], moon[:, 1]);

