
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2019

Doc 20 Kafka
Apr 18, 2019

Copyright ©, All rights reserved. 2019 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

The Problem

 2

Web
Server

Database
Inventory system

Billing system

Shipping & Tracking system

Now add micro services

The Problem

 3

An Improvement

 4

The Log

 5

What every software engineer should know about real-time data's unifying abstraction

Jay Kreps
Lead developer of Kafka

https://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

http://tinyurl.com/qc43s5j

Why logs are the basic data structure for distributed computing

What Is a Log?

 6

Sequence number becomes timestamp

Databases and Logs

 7

How to make actions ACID

Database

SQL request

Log

Log each operation
Use the log to recover past state

Physical logging
Log the state of the row that is changing

Logical logging
Log the SQL statement

The log contains Database History

 8

With a complete log file we can
Recreate the current state of the database

Recreate the database for any time in the past

Used by in-memory databases
Keep current state of tables in memory
Each write operation is logged
To restart database replay log file

Replicating Databases

 9

We can use the log to replicate the database

Inverting the Structure

 10

Distributed Systems & Replication

 11

Message System - Queue

 12

9 2 13 6

Producers
Consumers

Scales well

No multi subscribers - once read data is gone

Message System Publish-Subscribe/Broadcast

 13

Producers

Consumers

Multi subscribers

Does not scale

Message System Publish-Subscribe/Broadcast

 14

Producers

Consumers

Multi subscribers

Does not scale

Message System Issues

 15

Failure

Multi-machine
Load balancing
Redundancy

Basic Messaging System Issue

 16

How to handle failure

Publisher fails
Consumer fails
Messenger node fails
Messenger system fails

Message Delivery Semantics

 17

At most once
Messages may be lost but are never redelivered

At least once
Messages are never lost but may be redelivered

Exactly once
What you want
Each message is delivered once and only once

Apache Kafka

 18

Unified, high-throughput, low-latency platform for handling real-time data feeds

Started at LinkedIn

Named after Franz Kafka - author
Kafka is a writing system
Lead developer liked Kafka's works

First release Jan 2011

Version 1.0 Nov 1, 2017

Developers left LinkIn formed Confluent

Few Users of Apache Kafka

 19

Cisco Systems
eBay
IPinYou
Netflix

36 Kafka clusters
700 billion messages per day
Good article on problems running Kafka on AWS

The New York Times
Publish content to applications & system to make it available to readers

Spotify
Used to send logs from all hosts to Hadoop cluster
Reduced transfer time from 4 hours to 10 seconds

Uber
Walmart
Yelp

Related Tools

 20

Apache ZooKeeper
 Distributed hierarchical key-value store

KSQL
Streaming SQL for Apache Kafka

Kafka Versions

 21

1.0.0
Nov 1, 2017

0.11.0.0
June 2017
Guaranteed delivery

0.10.0.0
May 2016
Streams API

1.0.0

Improved Streams API

Better metrics on Kafka performance

Supports Java 9
Faster encryption

Tolerates disk failure better
JBOD broker tolerates one disk failure

Improved throughput on transactions

Kafka - Key Capabilities

 22

Publish and subscribe to streams of records
Message queue or enterprise messaging system

Store streams of records in a fault-tolerant way

Process streams of records as they occur

 23

Kafka is run as a cluster on one or more servers

The Kafka cluster stores streams of records in categories called topics

Each record consists of a key, a value, and a timestamp

Core API

 24

Producer
Allow an application to publish stream of records to 1 or more topics

Consumer
Allow an application to subscribe to 1 or more topics and read stream of records

Streams
An application consume an input stream and produce an output stream

Connector
Producer or consumer connect Kafka topic to existing data systems
Connect to database could capture every change to a table

 25

Kafka - Topic, Partitions, Logs

 26

Topics, Partitions, Logs

 27

Topic
A category for a stream of records
Can have 0, 1, or many consumers subscribe to it
Can have multiple partitions

Partition
Log of records for a topic
Stored on disk
Records are given sequential id
Each partition on different machine
Each partition replicated

Retaining records

 28

Records are retained for a fixed time
Configurable

Records are not deleted after a read

Records are deleted at end of retention period even if not read

Number of records in single partition
Does not affect performance
Single partition must fit on one machine

Consumers & Partitions

 29

Kafka server maintains offset for each consumer
Last read record
Makes consumers cheap to support

Consumer controls offset
Can go back
Skip ahead

Distribution of Partitions

 30

Each Kafka server handles a share of partitions
Typically there are many topics

Each partition
Replicated on multiple machines
One machine is leader of partition
Others are followers

Each machine is leader for some partitions

When leader fails follower becomes leader

Producers

 31

Publish data to topics of their choice

Producer chooses with partition to write to
Round robin
Select by key

Consumers

 32

Consumers have a consumer group name

Each record in a topic is delivered to one consumer in each subscribing consumer group

Guarantees

 33

Topic partition appends messages from same producer in the order they are sent

A consumer instance sees records in the order they are stored in partition log

For a topic with replication factor N,
we will tolerate up to N-1 server failures without losing any records committed to the log

What does not happen

 34

Individual partitions are ordered by when messages arrive

There is no order kept between partitions in the same topic

Producer
Sends M1 to partition A
Then send M2 to partition B in same topic
Kafka does keep track that M1 arrived first
Partition A and B could be on different machines

Per-partition ordering + the ability to partition data by key is sufficient for most applications

Example - Logging User Web Activity

 35

Partition1

Partition3

Kafka Server 1

Partition2

Partition4

Kafka Server 2

Web
Server

Web Server
Processes

Kafka Producers

U1

U2

U1

Example - Logging User Web Activity

 36

Partition1

Partition3

Kafka Server 1

Partition2

Partition4

Kafka Server 2

U1

U2

U1

Consumer Group

If Need Strict Ordering of Messages

 37

Use one partition for the topic

Means only one client per consumer group on that topic

Kafka Performance

 38

On three cheap machines

Setup

6 machines

Intel Xeon 2.5 GHz processor with six cores
Six 7200 RPM SATA drives
32GB of RAM
1Gb Ethernet

Kafka cluster - 3 machines
Zookeeper - 1 machine
Generating load - 3 machines

Test uses 100 byte messages

http://tinyurl.com/ng2h9uh

6 partitions

Producer Throughput

 39

Records/Second MB/sec

1 producer, no replication of partition 821,557 78.3

1 producer, 3 async replication 786,980 75.1

1 producer, 3 sync replication 421,823 40.2

3 producers, 3 async replication 2,025,032 193.0

7,290,115,200 Records/Hour

Producer Throughput Versus Stored Data

 40

Does the amount of stored data affect performance?

Persisting messages is O(1)

Consumer Throughput

 41

Records/Second MB/sec

1 consumer 940,521 89.7

3 consumers - same topic 2,615,968 249.5

6 partitions, 3x async replicated

End-to-end Latency

 42

Producer
ConsumerKafka

System

2ms - median
3ms - 99th percentile
14ms - 99.9 percentile

What Makes Kafka Fast - Partitions

 43

Allows concurrent writes & reads on same topic

What Makes Kafka Fast - Messages

 44

Messages
Binary format
Batched
Compressed

 bit 0~2:
 0: no compression
 1: gzip
 2: snappy
 3: lz4

Producer convert message into binary

Kafka treats message as bits

Consumer needs to know how to unpack message

Producer supplies schema
Adds schema to ZooKeeper

What Makes Kafka Fast - Use the Filesystem

 45

Linear read/writes are very fast on hard drives
JBOD configuration six 7200rpm SATA drives 600MB/sec

Modern OS (Linux)
Heavily optimized
read-ahead, write-behind
Will use all free memory for disk cache

JVM
Memory overhead of objects is high
Java garbage collection becomes slow as heap data increases

So
Write data to disk
Use as little memory as possible
Let OS use nearly all memory for disk cache

28-30GB cache on 32GB machine

What Makes Kafka Fast - sendfile

 46

Normal path to send a file on network

1 OS copies file Disk -> page cache in kernel space

2 Application copies data: page cache -> user-space

3 Application copies data: user-space -> socket buffer in kernel space

4 OS copies data: socket buffer -> NIC buffer

Using sendfile to send a file on network

1. OS copies file: Disk -> NIC buffer

Using OS pagecache + sendfile means when consumers are mostly caught up
Files served from cache

Message Delivery Semantics

 47

How to guarantee delivery producer -> Kafka

Partition1

Partition3

Kafka Server 1
Partition1
Follower

Partition4

Kafka Server 2

M1

Producer

M1

When do we consider message delivered?

When leader get the message
When all replicated partitions get the message

Message Delivery Semantics

 48

How to guarantee delivery producer -> Kafka

Partition1

Partition3

Kafka Server 1
Partition1
Follower

Partition4

Kafka Server 2

M1

Producer

M1

Producer does not know if message was delivered
Producer needs to resend message

Prior to 0.11.0 would create duplicate message in log

Message Delivery Semantics

 49

How to guarantee delivery producer -> Kafka

Idempotent Delivery - Kafka 0.11.0

Each producer
Has an ID
Adds sequence number to messages

Kafka server checks for duplicates

Transactions - Kafka 0.11.0
Producer can send messages to multiple topics
All either succeed or all fail

Message Delivery Semantics

 50

How to guarantee delivery producer -> Kafka

Producer can specify
Be notified when leader and all followers have message
Be notified when leader has message
Provide a time out
Receive no notifications

Replication

 51

Each partition has a single leader and zero or more followers (slaves)

Followers are consumers of the leader partition
Allows for batch reads

Live or in-sync node
Node maintains its session with ZooKeeper

If follower must not be too far behind leader
replica.lag.time.max.ms

Failed node
One that is not in-sync

When a Leader Dies

 52

In-sync replicas (ISR)
Follower partitions that are caught-up with leader

ZooKeeper maintains the ISR set for each partition

When partition leader fails
Nodes in ISR vote on new leader

A machine may handle 1,000's of topics and even more partitions

Message Delivery Semantics

 53

How to guarantee delivery producer -> Kafka

Producer can specify
Be notified when leader and all followers have message
Be notified when leader has message
Provide a time out
Receive no notifications

Producer specifies ack parameter
0 - no acknowledgement
1 - acknowledgement when leader has message
all (-1) - acknowledgement when all ISR partitions received the message

Zookeeper

 54

Because coordinating distributed systems is a Zoo

Distributed hierarchical key-value store

For large distributed systems
Distributed configuration service,
Synchronization service,
Naming registry

Zookeeper

 55

Running Kafka

 56

Download and unpack Kafka

Start Zookeeper (it comes with Kafka)

bin/zookeeper-server-start.sh config/zookeeper.properties

In Kafka directory

Start Kafka Server

bin/kafka-server-start.sh config/server.properties

bin/kafka-topics.sh --create --zookeeper localhost:2181
 --replication-factor 1 --partitions 1 --topic test

Create a topic

You can configure producers to auto-create topics when publish to new topic

Running Kafka

 57

bin/kafka-topics.sh --list --zookeeper localhost:2181

List of topics

bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

Send some messages

>this is a test
>this is a message
>Hi mom

bin/kafka-console-consumer.sh --bootstrap-server localhost:9092
 --topic test --from-beginning

Start a client

this is a test
this is a message
Hi mom

Running Kafka

 58

bin/kafka-topics.sh --list --zookeeper localhost:2181

List of topics

bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

Send some messages

>this is a test
>this is a message
>Hi mom

bin/kafka-console-consumer.sh --bootstrap-server localhost:9092
 --topic test --from-beginning

Start a client

this is a test
this is a message
Hi mom

Running Kafka

 59

Setting up a multi-broker cluster

cp config/server.properties config/server-1.properties

cp config/server.properties config/server-2.properties

Edit configuration so can run on same machine

bin/kafka-server-start.sh config/server-1.properties &

Start the servers

bin/kafka-server-start.sh config/server-2.properties &

Running Kafka

 60

bin/kafka-topics.sh --create --zookeeper localhost:2181
 --replication-factor 3
 --partitions 1
 --topic my-replicated-topic

Create a new topic with a replication factor of three

bin/kafka-topics.sh --describe --zookeeper localhost:2181
 --topic my-replicated-topic

Topic:my-replicated-topic PartitionCount:1 ReplicationFactor:3 Configs:
 Topic: my-replicated-topic Partition: 0 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0

Get information about topic

In-sync

