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Big Data
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Data sets that are so large or complex that traditional data 
processing applications are inadequate 

Wikipedia



Big Data
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Hulu  
Imports 20GB per second continuously

Celeste Project 
55 terabytes of data processed in 15 minutes



Intel Ruler
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32 TB SSD
Rack mounted 
1PB in 1U

1 Rack holds 42 PB



Amazon AWS Snowball
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80 Terabytes 



Amazon AWS Snowmobile
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100 Petabytes

Value Metric

1000 kB kilobyte

10002 MB megabyte

10003 GB gigabyte

10004 TB terabyte

10005 PB petabyte

10006 EB exabyte

10007 ZB zettabyte

10008 YB yottabyte

https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Gigabyte
https://en.wikipedia.org/wiki/Terabyte
https://en.wikipedia.org/wiki/Exabyte
https://en.wikipedia.org/wiki/Zettabyte
https://en.wikipedia.org/wiki/Yottabyte


Big Data 3-5 V’s
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Complexity

Volume 
Large datasets  

Variety 
Different formats 
Structured, Numeric, Unstructured, images, email, etc. 

Variability 
Data flows can be inconsistent

Veracity 
Accuracy 

Clusters - Spark

Velocity 
Real time or near-real time streams of data

Kafka

NoSQL 
Cassandra



Scaling to Handle Large Data Sets
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Scaling up (Vertically) 
Add more resources to single machine 
Memory, disk space, faster processor, etc 
Easier that scaling out but limited 
Amazon AWS has servers with 2 TB of memory 

Scaling out (Horizontally) 
Using multiple machines/processors 
Adds complexity



Scaling Up & Amdahl’s Law
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T(1) be the time it takes a sequential program to run 
T(N) be the time it takes a parallel version of the program to run on N processors. 

Speedup using N processors 

S(N) = T(1)/T(N)

Let p = % of program that can be parallelized  

Amdahl’s Law 

S(N) = 1/(1 - p + p/N)



Amdahl’s Law
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Let p = % of program that can be parallelized  

Amdahl’s Law 

S(N) = 1/(1 - p + p/N)

p = 1 
S(N) = 1/(1 - 1 + 1/N) 
         = 1/(1/N) 
         = N

p = 0 
S(N) = 1/(1 - 0 + 0/N) 
         = 1 
   



Amdahl’s Law
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Let p = % of program that can be parallelized  

Amdahl’s Law 

S(N) = 1/(1 - p + p/N)

Given p = 0.5 how many processors does in make sense to use? 

What does p have to be to get a speedup of  
    5 or greater using 10 processors? 
    10 or greater using 20 processors? 
    20 or greater using 40 processors? 
    50 or greater using 100 processors?



Issues
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What types of problems can be solved using cluster of commodity computers? 
When are setup time and communication time too high? 
How many machines? 

How to distribute data? 

How to find the data? 

What to do when machine fails?  

How to distribute computation? Load balancing? 

How to share computation? 

Send computation result from node A to node B 

How does node B wait? How long is B idle? 

How to combine results 

Performance tuning



Pleasingly Parallel 
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Weather Simulation
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Create 4km grid 
24 second time steps 
35 vertical layers 

Each time step 
Compute effect of rain solar radiation 
in each square in grid 

Propagate effect of change to neighboring 
grid cells and layers
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Processor 1 Processor 2



How to Distribute Data & Computation
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Automate as much as possible 

Want to run code on different number of nodes at different times 
Code should be independent of number of nodes 

Node B should not know about Node C 
Is there a node C? 
Which is node B? C?



Example
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val sum = data.reduce(_ + _) var sum = 0 

for (k <- 0 to data.length) 
  sum += data(k)

val data = readDataIntoArray(xxx)

Compiler issue 
Has to handle all possible loop contents 
Has to know where data is located

for (k <- 0 to data.length/2) 
  sum += data(k) + data(data.length - k -1)

Library issue 
Handle one case 
No direct access to array index 
Library can distribute data



Parallelizing Python Code
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Hadoop 
Map-reduce only 

Spark 
Map-Reduce 
Some 

ML 
Statistics 

Dask 
Parallelize Panda, NumPy, Scikit-Learn 
Low level parallelization 



Hadoop vs Spark
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June 2015 Apr 2017



What is Going On
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Latency numbers every programmer should know
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L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs
Read 1 MB sequentially from memory ..... 250,000 ns  = 250 µs
Round trip within same datacenter ...... 500,000 ns  = 0.5 ms
Read 1 MB sequentially from SSD* ..... 1,000,000 ns  =   1 ms
Disk seek ........................... 10,000,000 ns  =  10 ms
Read 1 MB sequentially from disk .... 20,000,000 ns  =  20 ms
Send packet CA->Netherlands->CA .... 150,000,000 ns  = 150 ms



Multiply by 1 Billion
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Minute: 
L1 cache reference       0.5 s         One heart beat (0.5 s)
Branch mispredict        5 s           Yawn
L2 cache reference       7 s           Long yawn
Mutex lock/unlock       25 s           Making a coffee

Hour: 
Main memory reference        100 s       Brushing your teeth
Compress 1K bytes with Zippy  50 min     One episode of a TV show

Day:
Send 2K bytes over 1 Gbps network   5.5 hr



Multiply by 1 Billion
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Week 

SSD random read                     1.7 days 
Read 1 MB sequentially from memory  2.9 days
Round trip within same datacenter   5.8 days
Read 1 MB sequentially from SSD    11.6 days

Year 

Disk seek                           16.5 weeks    
Read 1 MB sequentially from disk    7.8 months
The above 2 together                1 year

Decade 

Send packet CA->Netherlands->CA     4.8 years
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https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html


Myth of Ram Access Being O(1)
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http://goo.gl/JwtF5v



Myth of Ram Access Being O(1)
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Lines - L1=32kiB, L2=256kiB, L3=4MB and 6 GiB of free RAM



Myth of Ram Access Being O(1)
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Blue Line =  O(√N)



History
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1990                 $103,880 

1995 - Java 1.0      Haskell (92)            $30,875 

2000 - Java 3                     $1,107 

2001 -          Scala started 

2002 - Nutch (Hadoop) started 

2004 - Google MapReduce paper  Scala v1            

2005 -          F#                        $189 

2006 - Hadoop split from Nutch                  Scala v2 

2007 -          Clojure 

2009 - Spark started 

2010          Scala on Tiobe index      $12 

2012 - Hadoop 1.0 

2014 - Spark 1.0 

2015                      $4

1GB Ram



Hadoop
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Hadoop Distributed File System (HDSF) 

Map Reduce



Hadoop MapReduce vs Spark
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Spark - 10 to 100 time faster 
Hadoop stores data on disk 
Spark keeps as much data in memory as possible

Spark 
Has much more functionality 
Uses most functional programming 
Hadoop only uses Map & Reduce

Spark 
Easier to use 
REPL



Two Language Problem
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Python
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Matlab Julia

Scala


