
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2020

Doc 2 Big Data Introduction
Jan 23, 2020

Copyright ©, All rights reserved. 2020 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Big Data

 2

Data sets that are so large or complex that traditional data
processing applications are inadequate

Wikipedia

Big Data

 3

Hulu
Imports 20GB per second continuously

Celeste Project
55 terabytes of data processed in 15 minutes

Intel Ruler

 4

32 TB SSD
Rack mounted
1PB in 1U

1 Rack holds 42 PB

Amazon AWS Snowball

 5

80 Terabytes

Amazon AWS Snowmobile

 6

100 Petabytes

Value Metric

1000 kB kilobyte

10002 MB megabyte

10003 GB gigabyte

10004 TB terabyte

10005 PB petabyte

10006 EB exabyte

10007 ZB zettabyte

10008 YB yottabyte

https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Gigabyte
https://en.wikipedia.org/wiki/Terabyte
https://en.wikipedia.org/wiki/Exabyte
https://en.wikipedia.org/wiki/Zettabyte
https://en.wikipedia.org/wiki/Yottabyte

Big Data 3-5 V’s

 7

Complexity

Volume
Large datasets

Variety
Different formats
Structured, Numeric, Unstructured, images, email, etc.

Variability
Data flows can be inconsistent

Veracity
Accuracy

Clusters - Spark

Velocity
Real time or near-real time streams of data

Kafka

NoSQL
Cassandra

Scaling to Handle Large Data Sets

 8

Scaling up (Vertically)
Add more resources to single machine
Memory, disk space, faster processor, etc
Easier that scaling out but limited
Amazon AWS has servers with 2 TB of memory

Scaling out (Horizontally)
Using multiple machines/processors
Adds complexity

Scaling Up & Amdahl’s Law

 9

T(1) be the time it takes a sequential program to run
T(N) be the time it takes a parallel version of the program to run on N processors.

Speedup using N processors

S(N) = T(1)/T(N)

Let p = % of program that can be parallelized

Amdahl’s Law

S(N) = 1/(1 - p + p/N)

Amdahl’s Law

 10

Let p = % of program that can be parallelized

Amdahl’s Law

S(N) = 1/(1 - p + p/N)

p = 1
S(N) = 1/(1 - 1 + 1/N)
 = 1/(1/N)
 = N

p = 0
S(N) = 1/(1 - 0 + 0/N)
 = 1

Amdahl’s Law

 11

Let p = % of program that can be parallelized

Amdahl’s Law

S(N) = 1/(1 - p + p/N)

Given p = 0.5 how many processors does in make sense to use?

What does p have to be to get a speedup of
 5 or greater using 10 processors?
 10 or greater using 20 processors?
 20 or greater using 40 processors?
 50 or greater using 100 processors?

Issues

 12

What types of problems can be solved using cluster of commodity computers?
When are setup time and communication time too high?
How many machines?

How to distribute data?

How to find the data?

What to do when machine fails?

How to distribute computation? Load balancing?

How to share computation?

Send computation result from node A to node B

How does node B wait? How long is B idle?

How to combine results

Performance tuning

Pleasingly Parallel

 13

2 -3 5 9 1 7 8 2 1 6

Compute Sum

2 -3 5 9 1 7 8 2 1 6

14 24

38

Weather Simulation

 14

Create 4km grid
24 second time steps
35 vertical layers

Each time step
Compute effect of rain solar radiation
in each square in grid

Propagate effect of change to neighboring
grid cells and layers

 15

Processor 1 Processor 2

How to Distribute Data & Computation

 16

Automate as much as possible

Want to run code on different number of nodes at different times
Code should be independent of number of nodes

Node B should not know about Node C
Is there a node C?
Which is node B? C?

Example

 17

val sum = data.reduce(_ + _) var sum = 0

for (k <- 0 to data.length)
 sum += data(k)

val data = readDataIntoArray(xxx)

Compiler issue
Has to handle all possible loop contents
Has to know where data is located

for (k <- 0 to data.length/2)
 sum += data(k) + data(data.length - k -1)

Library issue
Handle one case
No direct access to array index
Library can distribute data

Parallelizing Python Code

 18

Hadoop
Map-reduce only

Spark
Map-Reduce
Some

ML
Statistics

Dask
Parallelize Panda, NumPy, Scikit-Learn
Low level parallelization

Hadoop vs Spark

 19

June 2015 Apr 2017

What is Going On

 20

Latency numbers every programmer should know

 21

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns = 3 µs
Send 2K bytes over 1 Gbps network 20,000 ns = 20 µs
SSD random read 150,000 ns = 150 µs
Read 1 MB sequentially from memory 250,000 ns = 250 µs
Round trip within same datacenter 500,000 ns = 0.5 ms
Read 1 MB sequentially from SSD* 1,000,000 ns = 1 ms
Disk seek 10,000,000 ns = 10 ms
Read 1 MB sequentially from disk 20,000,000 ns = 20 ms
Send packet CA->Netherlands->CA 150,000,000 ns = 150 ms

Multiply by 1 Billion

 22

Minute:
L1 cache reference 0.5 s One heart beat (0.5 s)
Branch mispredict 5 s Yawn
L2 cache reference 7 s Long yawn
Mutex lock/unlock 25 s Making a coffee

Hour:
Main memory reference 100 s Brushing your teeth
Compress 1K bytes with Zippy 50 min One episode of a TV show

Day:
Send 2K bytes over 1 Gbps network 5.5 hr

Multiply by 1 Billion

 23

Week

SSD random read 1.7 days
Read 1 MB sequentially from memory 2.9 days
Round trip within same datacenter 5.8 days
Read 1 MB sequentially from SSD 11.6 days

Year

Disk seek 16.5 weeks
Read 1 MB sequentially from disk 7.8 months
The above 2 together 1 year

Decade

Send packet CA->Netherlands->CA 4.8 years

 24

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Myth of Ram Access Being O(1)

 25

http://goo.gl/JwtF5v

Myth of Ram Access Being O(1)

 26

Lines - L1=32kiB, L2=256kiB, L3=4MB and 6 GiB of free RAM

Myth of Ram Access Being O(1)

 27

Blue Line = O(√N)

History

 28

1990 $103,880

1995 - Java 1.0 Haskell (92) $30,875

2000 - Java 3 $1,107

2001 - Scala started

2002 - Nutch (Hadoop) started

2004 - Google MapReduce paper Scala v1

2005 - F# $189

2006 - Hadoop split from Nutch Scala v2

2007 - Clojure

2009 - Spark started

2010 Scala on Tiobe index $12

2012 - Hadoop 1.0

2014 - Spark 1.0

2015 $4

1GB Ram

Hadoop

 29

Hadoop Distributed File System (HDSF)

Map Reduce

Hadoop MapReduce vs Spark

 30

Spark - 10 to 100 time faster
Hadoop stores data on disk
Spark keeps as much data in memory as possible

Spark
Has much more functionality
Uses most functional programming
Hadoop only uses Map & Reduce

Spark
Easier to use
REPL

Two Language Problem

 31

Speed

In
te

ra
ct

iv
e

Java

Python

R
Matlab Julia

Scala

