CS 649 Big Data: Tools and Methods Fall Semester, 2021 Doc 7 Statistics, Sampling, Bloom Jan 4, 2021

Copyright ©, All rights reserved. 2021 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Descriptive Statistics

mean median mode variance standard variation quantiles

Descriptive Statistics

Arithmetic mean

mean(numbers) = sum(numbers)/length(numbers)

mean([1,7,3,8,5]) == 4.80

median

Middle value of sorted list of numbers If even number of values then mean of middle two values

median([1,7,3,8,5]) == 5.00

mode

Value that appears the most in the data

Descriptive Statistics

Variance

Measures the spread in the numbers

Standard Deviation, (SD, s, σ) square root of the variance

Bessel's Correction

Normally only have a sample of data

Computing mean from sample introduces bias

Bessel's correction for this bias Divide by N-1

 $s^2=rac{1}{N-1}\sum_{i=1}^N(x_i-\overline{x})^2.$

For large N this is not needed

But if underlying distribution is skewed or has long tails (kurtosis) other biases are introduced

Python functions Use Bessel's correction

data = pd.Series([2,4,4,4,5,5,7,9])

data.var() data.std() data.mean() data.median()

data.skew() 0.8184875533567997

pd.Series([1,2,3,4,5,10,20,50,100,1000]).skew()

Me & Bill Gates

mean of mine & Bill Gates net worth = \$39.6 B

variance 3144.2 standard deviation 51.6

mean of Zuckerberg & Carlos Slim net worth = \$52.3 B

variance 11.5 standard deviation 3.39

Quantiles

q-quantiles

Cutpoints that divide the sorted data into q equal sized groups

0.75 17.00

⁹ dtype: float64

Red Bar shows middle two quartiles

White bar is median

Range/Median

10

2008-9 Academic Salary

salaries_url = "https://vincentarelbundock.github.io/Rdatasets/csv/carData/Salaries.csv"
salaries = pd.read_csv(salaries_url, index_col=0)

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500

- A = Theoretical Department
- B = Applied Department

Salary & Sex

12

Salary & Rank

Scatter Plot: Salary-Years Colored by Rank

Salary

Box Plots (Tukey Method)

Salary by Discipline

Salary

Salary by Rank

Salary

Beeswarm: Salary by Rank with Sex

Violin Plot: Salary by Rank

Salary

Distributions

Think in distributions not numbers

Poincare's Baker France late 1800's Bread hand made, regulated Variation in weight of bread Poincare suspected baker of cheating

Dwell Time & A/B Testing of Websites Dwell time - how long people spend on a web page

A/B testing - Showing two versions of a page to different people

How to tell if dwell time differs from between versions

Normal (Gaussian) Distribution

$$f(x\mid \mu,\sigma^2)=rac{1}{\sqrt{2\sigma^2\pi}}\;e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Normal distribution is specified by

- µ mean, central point
- σ standard deviation

Populations & Samples

Populations - all the items Sample - set of representative items

Standard Error of sample = σ_x /sqrt(n)

Standard Error of mean (SEM)

Measure	Sample statistic	Population parameter
Number of items	n	Ζ
Mean	x	μx
Standard deviation	S_x	$\sigma_{\!\scriptscriptstyle X}$
Standard error	S _x	

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

Hypothesis Testing

- H₀ Status quo Null hypothesis
 - Poincare's Baker bread weight is correct
 - People spend the same amount of time on version A and B of the website

- H₁ What you are trying to prove Alternative hypothesis
 - Poincare's Baker bread weight is less than it should be

People spend the more time on version A than B of the website

alpha - probability that H1 is false

0	.05
0	.01
0	.001

Sample N loaves of bread compute mean If probability of that mean occurring from properly manufactured bread is less than 0.05 we accept H₁

Types of Errors

False Positive (FP), type I error Accepting H₁ when it is not true Smaller alpha values reduce FP

False Negative (FN), type II error Rejecting H₁ when it is true Small alphas increase FN

Causation & Correlation

Statistics

Does not prove that one thing is caused by another Demonstrates that events are rare

If we accept H₁ with alpha = 0.05

5% chance that H₁ is wrong

If 100 studies accept H₁ with alpha = 0.05 Expect about 5 of them are false positives

Bonus Slide

Center For Open Science

https://cos.io/our-services/research/

Reproduced 100 published Psychology studies

97 original studies had significant results p < .05

36 reproduced studies had significant results p < .05

47 original effects sizes were in the 95% confidence interval of replication

Bonus Slide - 2

John P. A. Ioannidis Why Most Published Research Findings Are False PLoS Med. 2005 Aug; 2(8): e124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/

Dr. Russell Schierling Why Can't We Reproduce Biomedical Research? <u>https://bit.ly/2X15u03</u>

Replication crisis <u>https://en.wikipedia.org/wiki/Replication_crisis</u>

primarily affecting parts of the social and life sciences in which scholars have found that the results of many scientific studies are difficult or impossible to replicate or reproduce on subsequent investigation

Sensitivity & Specificity

Sensitivity

Correctly predicted H₁ cases

Total number of H₁ cases

Specificity

Correctly predicted non-H1 cases

Total number of non-H1 cases

Confidence Interval

Given a distribution and a p value

The interval that will contain 1-p of the values

95% Confidence, **p = 0.05**

±1.96*Standard Deviation

Poincare's Baker

How to check for Cheating Bakers

Weigh N samples of bread

Compute confidence interval of the mean of the sample

See if expected mean is in confidence interval

Poincare's Baker

Assume Bread weight supposed to be 1000g Standard deviation of 30g Baker makes bread 20g lighter	10 Samples Confidence interval of mean 974.0 990.0 972.5 988.0
	966.0 983.0
Random sample	971.2 985.0
100 items	972.8 988.0
Mean 1000 - 20	972.1 988.0
Standard deviation 30	973.3 989.0
Compute the confidence interval for mean	970.5 988.0
•	971.9 986.0
Repeat 10 times	970.8 986.0
using Distributions	

using HypothesisTests

```
d = Normal(980,30)
fake_sample = rand(d,100)
(a,b) = ci(OneSampleTTest(fake_sample),0.01)
33
```

Poincare's Baker

Assume		
Bread weight supposed to be 1000g	10 Sar	noles
Standard deviation of 30g	a	b
Baker makes bread 10g lighter	978.6	995.0
	983.2	998.0
Random sample	983.1	998.0
100 items	979.7	997.0
Mean 1000 - 10	982.7	999.0
Standard deviation 30	986.8	1000.0
Compute the confidence interval for mean	983.7	999.0
	979.9	995.0
Repeat 10 times	981.3	997.0
	984.8	1002.0
using Distributions using HypothesisTests		
d = Normal(990,30)		
fake sample = rand(d,100)		

3(a,b) = ci(OneSampleTTest(fake_sample),0.01)

Central Limit Theorem

Plot 10_000 random integers

Between 0 and 1

Bin the results

Central Limit Theorem

Means

Poincare's Baker - Part Two

After being fined the baker still cheated

But always gave Poincare the heaviest loaf

Poincare still caught him!

Dwell Times on Web sites

Look at Dwell data of website

Don't know the distribution of the dwell times

But daily mean of dwell times will be normally distributed

Dwell Data

54000×2 DataFrames.DataFrame

	Row		date		Dwell	
						١
I	1	Ι	"2015-01-01T00:03:43Z"	I	74	I
I	2	I	"2015-01-01T00:32:12Z"		109	
I	3	Ι	"2015-01-01T01:52:18Z"		88	
I	4	Ι	"2015-01-01T01:54:30Z"	I	17	I

Dwell Times

Divide the range of data into 50 equal bins Plot the number of items in each bin

Exponential Distribution

Log2(Y)

Log Scale - So Dwell Time is Exponential Dist.

plot(dwell_times, x="Dwell", Geom.histogram(bincount = 50), Scale.y_log2)

Compute Daily Mean Dwell Time

plot(daily_dwell, x="Dwell_mean", Geom.histogram(bincount=20))

Week Days

120

Dwell_mean

140

160

Weekends

sample size = 107

mean = 90.2

std = 3.7

CI of mean p = 0.05 (115,122)

sample size = 107 mean = 118.3 std = 11.0 Cl of mean p = 0.05 (89.5,90.9)

100

0

80

Sampling - Motivation

How to find mean and median of 1 Billion values?

Web browser wants to warn user when they request a known malicious website Could be millions of malicious websites Don't want to check server for each URL

Web Crawler Visit page A Extract all links from page A Repeat process on all links from page A How to know if you have already visited a page? Google indexes ~45 Billion web pages

Populations & Samples

Populations - all the items Sample - set of representative items

Standard Error of sample = σ_x /sqrt(n)

Standard Error of mean (SEM)

Measure	Sample statistic	Population parameter
Number of items	n	Ν
Mean	x	μx
Standard deviation	S_x	$\sigma_{\!\scriptscriptstyle X}$
Standard error	S _x	

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

Sampling

100,000 data points Compute the average

Take random sample of 1000 compute average How close will sample average be to actual average?

- Let s = average of the sample n = sample size = 1000

Standard Error = standard deviation = s/sqrt(n)

Sampling

Let s = average of the sample n = sample size = 1000

Standard Error = standard deviation = s/sqrt(n)

Confidence Interval (s - z*s/sqrt(n), s + z*s/sqrt(n))

```
Width of confidence interval = s + z^*s/sqrt(n) - (s - z^*s/sqrt(n))
= s + z^*s/sqrt(n) - s + z^*s/sqrt(n)
= z^*s/sqrt(n) + z^*s/sqrt(n)
= 2z^*s/sqrt(n)
```

Sampling

Confidence Interval (s - z*s/sqrt(n), s + z*s/sqrt(n))

Experiment 100,000 random integer between 0 and 1000 Sample size 1,000

Sample mean (s) = 532.33

Confidence Interval at 95% = (499.3, 565.3)

Actual mean = 501.4

What if we want sample to be within 10?

Width of confidence interval = $W = 2z^*s/sqrt(n)$

- $n = 4z^{2}s^{2}/W^{2}$
 - = 4 * 1.96² * 501.4²/10²
 - ≈ 39000

Mean of samples of size 39000

502.37	Population mean
500.795	501 4
503.108	001.4
202.400 209 351	
499.907	
500.791	
501.248	
501.814	
501.707	
:	
5 6 04.143	

500 505

Bloom Filter

Burton Bloom - 1970

Space-efficient probabilistic data structure

Test whether an element is in a set

Bloom filter does not contain the elements in the set

False positive matches are possible Possibly in set

False negatives are not possible Definitely not in set

Fypesiof (En)rors error

Accepting a statement as true when it is not true

False Negative (FN), type II error Accepting a statement as false when it is true

Bloom Filter - How it works

Empty Bloom filter

m bits all 0

k different hash functions

0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
---	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Bloom Filter - How it works	m = 18
	k = 3

Insert x

Bloom Filter - How it works	m = 18 k = 3
Contains y?	{x}

Bloom Filter - How it works	m = 18 k = 3
Contains x?	{x}

Bloom Filter - How it works	m = 18 k = 3
Contains y?	{x, z}

Bloom Filter - How it works

Larger m

Decreases false positives Increases table size - fewer collisions

Larger k

Decreases false positives up to a point But fills table faster

Bloom filter for Scala

https://github.com/alexandrnikitin/bloom-filter-scala

// Create a Bloom filter
val expectedElements = 1000000
val falsePositiveRate = 0.1
val bf = BloomFilter[String](expectedElements, falsePositiveRate)

// Put an element
bf.add(element)

// Check whether an element in a set bf.mightContain(element)

// Dispose the instance
bf.dispose()

Bloom Filter - Sample Uses

Akamai's web servers

Some pages are only accessed once - One-hit-wonders Only cache web page after second time it is accessed Use bloom filter to determine if page has been seen before

Google BigTable, Apache HBase and Apache Cassandra, and Postgresql Use Bloom filters to see if rows or columns exist Avoid costly disk access on nonexistent rows

Google Chrome web browser

Use Bloom filter to identify malicious URLs

If filter contains the url then check server to make sure

Medium

Uses Bloom filters to avoid recommending articles a user has previously read

Heavy Hitters Problem

Streaming Real time

Computing popular products

Given the page views on Amazon which products are viewed the most?

Computing frequent search queries

Given the stream of Google searches what are the popular searches

3.5 billion searches per day

View Tweets

How often are trees viewed? What the most popular tweets?

Heavy Network flows

Given packet count source and destination through switch Where is the traffic the heaviest? Cisco Nexus 9500 - 172.8 Tbps Useful to detect DoS attacks

Volatile Stocks

Given stream of stock transactions which stocks are

Traded the most

Change prices the most

Count-Min Sketch

Graham Cormode and S. Muthu Muthukrishnan - 2003

Consume a stream of events Count the frequency of the different types of events in the stream Does not store the events

Counts for each event type Estimate of actual count Within given range of actual count with given probability

Initial count-min sketch

w - columns

d - rows

d different hash functions

All entries integers = 0

w determines Interval length containing actual count

d determines Probability that actual count is in interval

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Event x

Event y

Event x

Event z

How often did x occur?

Look at counts for x in each row Return the minimum count

